Jump to content

Mass: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 5: Line 5:
for measurements with a precision better than a few percent (due to slight differences in the strength of the Earth's gravitational field at different places), and
for measurements with a precision better than a few percent (due to slight differences in the strength of the Earth's gravitational field at different places), and
for places far from the surface of the Earth, such as in space or on other planets.
for places far from the surface of the Earth, such as in space or on other planets.
suk ur muda






Revision as of 15:15, 19 January 2009

In physical science, mass refers to the degree of acceleration a body acquires when subject to a force: bodies with greater mass are accelerated less by the same force. One says the body of greater mass has greater inertia. The mass of an amount of matter in a chemical substance is determined in part by the number and type of atoms or molecules it contains, and in part by the energy involved in binding it together. According to special relativity, energy also has mass according to the principle of mass–energy equivalence as exemplified in the process of nuclear fusion and the bending of light.[1]

In everyday usage, mass is commonly confused with weight. But, in physics and engineering, weight means the strength of the gravitational pull on the object; that is, how heavy it is, measured in units of newtons. In everyday situations, the weight of an object is proportional to its mass, which usually makes it unproblematic to use the same word for both concepts. However, the distinction between mass and weight becomes important for measurements with a precision better than a few percent (due to slight differences in the strength of the Earth's gravitational field at different places), and for places far from the surface of the Earth, such as in space or on other planets. suk ur muda


Inertial and gravitational mass

One may distinguish conceptually between three types of mass or properties called mass:[2]

  • Inertial mass is a measure of an object's resistance to changing its state of motion when a force is applied. An object with small inertial mass changes its motion more readily, and an object with large inertial mass does so less readily.
  • Passive gravitational mass is a measure of the strength of an object's interaction with a gravitational field. Within the same gravitational field, an object with a smaller passive gravitational mass experiences a smaller force than an object with a larger passive gravitational mass.
  • Active gravitational mass is a measure of the strength of the gravitational field due to a particular object. For example, the gravitational field that one experiences on the Moon is weaker than that of the Earth because the Moon has less active gravitational mass.

Although inertial mass, passive gravitational mass and active gravitational mass are conceptually distinct, no experiment has ever unambiguously demonstrated any difference between them. In classical mechanics, Newton's third law implies that active and passive gravitational mass must always be identical (or at least proportional), but the classical theory offers no compelling reason why the gravitational mass has to equal the inertial mass. That it does is merely an empirical fact.

Albert Einstein developed his general theory of relativity starting from the assumption that this correspondence between inertial and (passive) gravitational mass is not accidental: that no experiment will ever detect a difference between them (the weak version of the equivalence principle). However, in the resulting theory gravitation is not a force and thus not subject to Newton's third law, so "the equality of inertial and active gravitational mass [...] remains as puzzling as ever".[3]

Inertial mass

This section uses mathematical equations involving differential calculus.

Inertial mass is the mass of an object measured by its resistance to acceleration.

To understand what the inertial mass of a body is, one begins with classical mechanics and Newton's Laws of Motion. Later on, we will see how our classical definition of mass must be altered if we take into consideration the theory of special relativity, which is more accurate than classical mechanics. However, the implications of special relativity will not change the meaning of "mass" in any essential way.

According to Newton's second law, we say that a body has a mass m if, at any instant of time, it obeys the equation of motion

where f is the force acting on the body and v is its velocity. For the moment, we will put aside the question of what "force acting on the body" actually means.

Now, suppose that the mass of the body in question is a constant. This assumption, known as the conservation of mass, rests on the ideas that (i) mass is a measure of the amount of matter contained in a body, and (ii) matter can never be created or destroyed, only split up or recombined. These are very reasonable assumptions for everyday objects, though, as we will see, mass can indeed be created or destroyed when we take special relativity into account. Another point to note is that, even in classical mechanics, it is sometimes useful to treat the mass of an object as changing with time. For example, the mass of a rocket decreases as the rocket fires. However, this is an approximation, based on ignoring pieces of matter which enter or leave the system. In the case of the rocket, these pieces correspond to the ejected propellant; if we were to measure the total mass of the rocket and its propellant, we would find that it is conserved.

When the mass of a body is constant, Newton's second law becomes

where a denotes the acceleration of the body.

This equation illustrates how mass relates to the inertia of a body. Consider two objects with different masses. If we apply an identical force to each, the object with a bigger mass will experience a smaller acceleration, and the object with a smaller mass will experience a bigger acceleration. We might say that the larger mass exerts a greater "resistance" to changing its state of motion in response to the force.

However, this notion of applying "identical" forces to different objects brings us back to the fact that we have not really defined what a force is. We can sidestep this difficulty with the help of Newton's third law, which states that if one object exerts a force on a second object, it will experience an equal and opposite force. To be precise, suppose we have two objects A and B, with constant inertial masses mA and mB. We isolate the two objects from all other physical influences, so that the only forces present are the force exerted on A by B, which we denote fAB, and the force exerted on B by A, which we denote fBA. As we have seen, Newton's second law states that

and

where aA and aB are the accelerations of A and B respectively. Suppose that these accelerations are non-zero, so that the forces between the two objects are non-zero. This occurs, for example, if the two objects are in the process of colliding with one another. Newton's third law then states that

Substituting this into the previous equations, we obtain

Note that our requirement that aA be non-zero ensures that the fraction is well-defined.

This is, in principle, how we would measure the inertial mass of an object. We choose a "reference" object and define its mass mB as (say) 1 kilogram. Then we can measure the mass of any other object in the universe by colliding it with the reference object and measuring the accelerations.

Gravitational mass

Gravitational mass is the mass of an object measured using the effect of a gravitational field on the object.

The concept of gravitational mass rests on Newton's law of gravitation. Let us suppose we have two objects A and B, separated by a distance |rAB|. The law of gravitation states that if A and B have gravitational masses MA and MB respectively, then each object exerts a gravitational force on the other, of magnitude

where G is the universal gravitational constant. The above statement may be reformulated in the following way: if g is the acceleration of a reference mass at a given location in a gravitational field, then the gravitational force on an object with gravitational mass M is

This is the basis by which masses are determined by weighing. In simple bathroom scales, for example, the force f is proportional to the displacement of the spring beneath the weighing pan (see Hooke's law), and the scales are calibrated to take g into account, allowing the mass M to be read off. Note that a balance (see the subheading within Weighing scale) as used in the laboratory or the health club measures gravitational mass; only the spring scale measures weight.

Equivalence of inertial and gravitational masses

The equivalence of inertial and gravitational masses is sometimes referred to as the Galilean equivalence principle or weak equivalence principle. The most important consequence of this equivalence principle applies to freely falling objects. Suppose we have an object with inertial and gravitational masses m and M respectively. If the only force acting on the object comes from a gravitational field g, combining Newton's second law and the gravitational law yields the acceleration

This says that the ratio of gravitational to inertial mass of any object is equal to some constant K if and only if all objects fall at the same rate in a given gravitational field. This phenomenon is referred to as the 'universality of free-fall'. (In addition, the constant K can be taken to be 1 by defining our units appropriately.)

The first experiments demonstrating the universality of free-fall were conducted by Galileo. It is commonly stated that Galileo obtained his results by dropping objects from the Leaning Tower of Pisa, but this is most likely apocryphal; actually, he performed his experiments with balls rolling down inclined planes. Increasingly precise experiments have been performed, such as those performed by Loránd Eötvös, using the torsion balance pendulum, in 1889. As of 2008, no deviation from universality, and thus from Galilean equivalence, has ever been found, at least to the accuracy 10-12. More precise experimental efforts are still being carried out.


The universality of free-fall only applies to systems in which gravity is the only acting force. All other forces, especially friction and air resistance, must be absent or at least negligible. For example, if a hammer and a feather are dropped from the same height through the air on Earth, the feather will take much longer to reach the ground; the feather is not really in free-fall because the force of air resistance upwards against the feather is comparable to the downward force of gravity. On the other hand, if the experiment is performed in a vacuum, in which there is no air resistance, the hammer and the feather should hit the ground at exactly the same time (assuming the acceleration of both objects towards each other, and of the ground towards both objects, for its own part, is negligible). This can easily be done in a high school laboratory by dropping the objects in transparent tubes that have the air removed with a vacuum pump. It is even more dramatic when done in an environment that naturally has a vacuum, as David Scott did on the surface of the Moon during Apollo 15.

A stronger version of the equivalence principle, known as the Einstein equivalence principle or the strong equivalence principle, lies at the heart of the general theory of relativity. Einstein's equivalence principle states that within sufficiently small regions of space-time, it is impossible to distinguish between a uniform acceleration and a uniform gravitational field. Thus, the theory postulates that inertial and gravitational masses are fundamentally the same thing.

References

  1. ^ Wolfgang Rindler (2006). Relativity: Special, General, and Cosmological (2nd ed.). Oxford University Press. p. 113. ISBN 0198567316.
  2. ^ Wolfgang Rindler (2006). op. cit.. p. 16; Section 1.12. ISBN 0198567316.
  3. ^ Wolfgang Rindler (2006). op. cit.. p. 22; end of Section 1.14. ISBN 0198567316.
  • R.V. Eötvös et al, Ann. Phys. (Leipzig) 68 11 (1922)
  • Taylor, Edwin F. (1992). Spacetime Physics. New York: W.H. Freeman and Company. ISBN 0-7167-2327-1. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)

Template:Link FA Template:Link FA