Jump to content

Massive Online Analysis

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by W Nowicki (talk | contribs) at 18:36, 22 March 2017 (is this notable yet?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

MOA
Developer(s)University of Waikato
Stable release
2014.11 / 2014/11/30
Repository
Operating systemCross-platform
TypeMachine Learning
LicenseGNU General Public License
Websitemoa.cms.waikato.ac.nz

Massive Online Analysis (MOA) is a free open-source software project specific for data stream mining with concept drift. It is written in Java and developed at the University of Waikato, New Zealand.[1]

Description

MOA is an open-source framework software that allows to build and run experiments of machine learning or data mining on evolving data streams. It includes a set of learners and stream generators that can be used from the Graphical User Interface (GUI), the command-line, and the Java API. MOA contains several collections of machine learning algorithms:

  • Classification
    • Bayesian classifiers
      • Naive Bayes
      • Naive Bayes Multinomial
    • Decision trees classifiers
      • Decision Stump
      • Hoeffding Tree
      • Hoeffding Option Tree
      • Hoeffding Adaptive Tree
    • Meta classifiers
      • Bagging
      • Boosting
      • Bagging using ADWIN
      • Bagging using Adaptive-Size Hoeffding Trees.
      • Perceptron Stacking of Restricted Hoeffding Trees
      • Leveraging Bagging
      • Online Accuracy Updated Ensemble
    • Function classifiers
    • Drift classifiers
    • Multi-label classifiers[2]
    • Active learning classifiers [3]
  • Regression
  • Clustering[6]
    • StreamKM++
    • CluStream
    • ClusTree
    • D-Stream
    • CobWeb.
  • Outlier detection[7]
    • STORM
    • Abstract-C
    • COD
    • MCOD
    • AnyOut[8]
  • Recommender systems
    • BRISMFPredictor
  • Frequent pattern mining
  • Change detection algorithms[11]

These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time.

MOA supports bi-directional interaction with Weka (machine learning). MOA is free software released under the GNU GPL.

See also

References

  1. ^ Bifet, Albert; Holmes, Geoff; Kirkby, Richard; Pfahringer, Bernhard (2010). "MOA: Massive online analysis". The Journal of Machine Learning Research. 99: 1601–1604.
  2. ^ Read, Jesse; Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard (2012). "Scalable and efficient multi-label classification for evolving data streams". Machine Learning. 88 (1–2): 243–272. doi:10.1007/s10994-012-5279-6. ISSN 0885-6125.
  3. ^ Zliobaite, Indre; Bifet, Albert; Pfahringer, Bernhard; Holmes, Geoffrey (2014). "Active Learning With Drifting Streaming Data". IEEE Transactions on Neural Networks and Learning Systems. 25 (1): 27–39. doi:10.1109/TNNLS.2012.2236570. ISSN 2162-237X.
  4. ^ Ikonomovska, Elena; Gama, João; Džeroski, Sašo (2010). "Learning model trees from evolving data streams". Data Mining and Knowledge Discovery. 23 (1): 128–168. doi:10.1007/s10618-010-0201-y. ISSN 1384-5810.
  5. ^ Almeida, Ezilda; Ferreira, Carlos; Gama, João (2013). "Adaptive Model Rules from Data Streams". 8188: 480–492. doi:10.1007/978-3-642-40988-2_31. ISSN 0302-9743. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ Kranen, Philipp; Kremer, Hardy; Jansen, Timm; Seidl, Thomas; Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard (2010). "Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA": 1400–1403. doi:10.1109/ICDMW.2010.17. {{cite journal}}: Cite journal requires |journal= (help)
  7. ^ Georgiadis, Dimitrios; Kontaki, Maria; Gounaris, Anastasios; Papadopoulos, Apostolos N.; Tsichlas, Kostas; Manolopoulos, Yannis (2013). "Continuous outlier detection in data streams": 1061. doi:10.1145/2463676.2463691. {{cite journal}}: Cite journal requires |journal= (help)
  8. ^ Assent, Ira; Kranen, Philipp; Baldauf, Corinna; Seidl, Thomas (2012). "AnyOut: Anytime Outlier Detection on Streaming Data". 7238: 228–242. doi:10.1007/978-3-642-29038-1_18. ISSN 0302-9743. {{cite journal}}: Cite journal requires |journal= (help)
  9. ^ Quadrana, Massimo; Bifet, Albert; Gavaldà, Ricard (2013). "An Efficient Closed Frequent Itemset Miner for the MOA Stream Mining System": 203. doi:10.3233/978-1-61499-320-9-203. {{cite journal}}: Cite journal requires |journal= (help)
  10. ^ Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard; Gavaldà, Ricard (2011). "Mining frequent closed graphs on evolving data streams": 591. doi:10.1145/2020408.2020501. {{cite journal}}: Cite journal requires |journal= (help)
  11. ^ Bifet, Albert; Read, Jesse; Pfahringer, Bernhard; Holmes, Geoff; Žliobaitė, Indrė (2013). "CD-MOA: Change Detection Framework for Massive Online Analysis". 8207: 92–103. doi:10.1007/978-3-642-41398-8_9. ISSN 0302-9743. {{cite journal}}: Cite journal requires |journal= (help)