Jump to content

Mitochondrial calcium uniporter

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CitationCleanerBot (talk | contribs) at 03:45, 8 November 2016 (top: clean up, url redundant with pmc, add pmc, and/or remove accessdate if no url using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Mitochondrial calcium uniporter
Identifiers
SymbolMCU
Alt. symbolsC10orf42, CCDC109A, FLJ46135
NCBI gene90550
HGNC23526
OMIM614197
PDBQ8NE86
RefSeqNM_138357
UniProtQ8NE86
Other data
LocusChr. 10 222
Search for
StructuresSwiss-model
DomainsInterPro

The mitochondrial calcium uniporter (MCU) is a transmembrane protein that allows the passage of calcium ions from a cell's cytosol into mitochondria.[1] Its activity is regulated by MICU1 and MICU2, which together with the MCU make up the mitochondrial calcium uniporter complex.[2]

The MCU is one of the primary sources of mitochondria uptake of calcium, and flow is dependent on membrane potential of the inner mitochondrial membrane and the concentration of calcium in the cytosol relative to the concentration in the mitochondria. Balancing calcium concentration is necessary to increase the cell's energy supply and regulate cell death. Calcium is balanced through the MCU in conjunction with the sodium-calcium exchanger.[1]

The MCU has a very low affinity for calcium, so the cytosolic calcium concentration needs to be approximately 5-10 uM for significant transport of calcium into the mitochondria. Mitochondria are closely associated with the endoplasmic reticulum (ER), which contains stores of cellular calcium ions for calcium signaling. The presence of 1,4,5-triphosphate (IP3) triggers the release of calcium from these intracellular stores, which creates microdomains of high calcium concentration between the ER and the mitochondria, creating the conditions for the MCU to take up calcium.[3]

Ruthenium red and Ru360 are typical reagents used to experimentally block the MCU to study its properties and role in mitochondrial signaling.[4][5]

References

  1. ^ a b "Mitochondrial Calcium Uniporter". Tocris.com. Tocris Bioscience. 2016. Retrieved 2016-02-24.
  2. ^ "MCU - Calcium uniporter protein, mitochondrial precursor - Homo sapiens (Human)". UniProt.org. UniProt Consortium. Retrieved 2016-02-24.
  3. ^ Marchi, Saverio; Pinton, Paolo (2014-03-01). "The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications". The Journal of Physiology. 592 (5): 829–839. doi:10.1113/jphysiol.2013.268235. ISSN 1469-7793. PMC 3948548. PMID 24366263.
  4. ^ Broekemeier, K. M.; Krebsbach, R. J.; Pfeiffer, D. R. (1994-10-12). "Inhibition of the mitochondrial Ca2+ uniporter by pure and impure ruthenium red". Molecular and Cellular Biochemistry. 139 (1): 33–40. doi:10.1007/bf00944201. ISSN 0300-8177. PMID 7531818.
  5. ^ Matlib, M. A.; Zhou, Z.; Knight, S.; Ahmed, S.; Choi, K. M.; Krause-Bauer, J.; Phillips, R.; Altschuld, R.; Katsube, Y. (1998-04-24). "Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes". The Journal of Biological Chemistry. 273 (17): 10223–10231. doi:10.1074/jbc.273.17.10223. ISSN 0021-9258. PMID 9553073.{{cite journal}}: CS1 maint: unflagged free DOI (link)