Moire deflectometry

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Moiré deflectometry produces result that appears similar to an interferometry technique,[1][2] in which the object to be tested (either phase object or specular surface) is mounted in the course of a collimated beam followed by a pair of transmission gratings placed at a distance from each other. The resulting fringe pattern, i.e., the moiré deflectogram, is a map of ray deflections corresponding to the optical properties of the inspected object.

Moiré deflectometry can be a powerful tool for nondestructive optical testing. A major advantage of the technique is that it is less sensitive to mechanical vibration, and it is therefore widely used in the ophthalmic industry for laminar analysis. A similar implementation in wind tunnel application for quantitative measurement is moire schlieren, a variation of schlieren photography.[3]

In 2012 the first application of the method for the measurement of electron density in plasma has been published.[4] The method excels in spatial and temporal resolution comparably with a similar approach of laser schlieren deflectometry.

References[edit]

  1. ^ O. Kafri Optics letters 1980; 5,555
  2. ^ Oberthaler, M. K.; et al. (October 1996). "Inertial sensing with classical atomic beams". Physical Review A. 54 (4): 3165–3176. 
  3. ^ O. Kafri & I Glatt "The Physics of Moiré Metrology" J. Wiley & Sons Inc. (1990)
  4. ^ Valenzuela, J. C.; Wyndham, E. S.; Chuaqui, H.; Cortes, D. S.; Favre, M.; Bhuyan, H. (2012). "Implementation of moire-schlieren deflectometry on a small scale fast capillary plasma discharge". Journal of Applied Physics. 111: 103301. doi:10.1063/1.4719982.