Jump to content

Motivic integration

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Leo Malmsheim (talk | contribs) at 14:46, 1 April 2017 (I updated the link to the Seattle notes). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Motivic integration is a notion in algebraic geometry that was introduced by Maxim Kontsevich in 1995 and was developed by Jan Denef and François Loeser. Since its introduction it has proved to be quite useful in various branches of algebraic geometry, most notably birational geometry and singularity theory. Roughly speaking, motivic integration assigns to subsets of the arc space of an algebraic geometry, a volume living in the Grothendieck ring of algebraic varieties. The naming 'motivic' mirrors the fact that unlike ordinary integration, for which the values are real numbers, in motivic integration the values are geometric in nature.

References