Jump to content

Multicategory

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ChrisGualtieri (talk | contribs) at 05:01, 22 May 2012 (Definition: TypoScan Project / General Fixes, typos fixed: , → , using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics (especially category theory), a multicategory is a generalization of the concept of category that allows morphisms of multiple arity. If morphisms in a category are viewed as analogous to functions, then morphisms in a multicategory are analogous to functions of several variables.

Definition

A multicategory consists of

  • a collection (often a proper class) of objects;
  • for every finite sequence of objects (for von Neumann ordinal ) and object Y, a set of morphisms from to Y; and
  • for every object X, a special identity morphism (with n = 1) from X to X.

Additionally, there are composition operations: Given a sequence of sequences of objects, a sequence of objects, and an object Z: if

  • for each , fj is a morphism from to Yj; and
  • g is a morphism from to Z:

then there is a composite morphism from to Z. This must satisfy certain axioms:

  • If m = 1, Z = Y0, and g is the identity morphism for Y0, then g(f0) = f0;
  • if for each , ni = 1, , and fi is the identity morphism for Yi, then ; and
  • an associativity condition: if for each and , is a morphism from to , then are identical morphisms from to Z.

Examples

There is a multicategory whose objects are (small) sets, where a morphism from the sets X1, X2, ..., and Xn to the set Y is an n-ary function, that is a function from the Cartesian product X1 × X2 × ... × Xn to Y.

There is a multicategory whose objects are vector spaces (over the rational numbers, say), where a morphism from the vector spaces X1, X2, ..., and Xn to the vector space Y is a multilinear operator, that is a linear transformation from the tensor product X1X2 ⊗ ... ⊗ Xn to Y.

More generally, given any monoidal category C, there is a multicategory whose objects are objects of C, where a morphism from the C-objects X1, X2, ..., and Xn to the C-object Y is a C-morphism from the monoidal product of X1, X2, ..., and Xn to Y.

An operad is a multicategory with one unique object; except in degenerate cases, such a multicategory does not come from a monoidal category. (The term "operad" is often reserved for symmetric multicategories; terminology varies. [1])

References

  • Tom Leinster (2004). Higher Operads, Higher Categories. Cambridge University Press.