Jump to content

Night vision: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Eveco (talk | contribs)
Replaced content with 'Large dicks'
Line 1: Line 1:
Large dicks
{{Mergefrom|Infrared signature|date=May 2008}}
{{Cleanup-reorganize|date=December 2006}}
{{Original research|article|date=September 2007}}
{{Redirect|Nightvision|the song by Daft Punk|Discovery (Daft Punk album)}}
[[Image:Nightvision.jpg|thumb|right|250px|Two [[United States|American]] Soldiers pictured during the [[2003 Iraq War]] seen through an image intensifier]]

'''Night vision''' is the ability to see in a dark environment. Whether by biological or technological means, night vision is made possible by a combination of two approaches: sufficient spectral range, and sufficient intensity range. Humans have poor night vision compared to many animals, in part because the human eye lacks a [[tapetum lucidum]].<ref>{{cite web|url=http://www.springerlink.com/content/k1t44v5003v6hhm3/|title=Histological study of choroidal melanocytes in animals with tapetum lucidum cellulosum (abstract)}}</ref>

==Types of ranges==

=== Spectral range ===
Night-useful spectral range techniques can sense radiation that is invisible to a human observer. Human vision is confined to a small portion of the [[electromagnetic spectrum]] called [[visible light]]. Enhanced spectral range allows the viewer to take advantage of non-visible sources of electromagnetic radiation (such as near-[[infrared]] or [[ultraviolet]] radiation). Some animals can see using much more of the infrared and/or ultraviolet spectrum than humans.

=== Intensity range ===
Sufficient intensity range is simply the ability to see with very small quantities of light. Although the human visual system can, in theory, detect single [[photon]]s under ideal conditions, the neurological [[noise]] filters limit sensitivity to a few tens of photons, even in ideal conditions.<ref>{{cite web|url=http://math.ucr.edu/home/baez/physics/Quantum/see_a_photon.html|title=The Human Eye and Single Photons}}</ref>

Many animals have better night vision than humans do, the result of one or more differences in the morphology and anatomy of their eyes. These include having a larger eyeball, a larger lens, a larger optical [[aperture]] (the pupils may expand to the physical limit of the eyelids), more rods than cones (or rods exclusively) in the [[retina]], a [[tapetum lucidum]], and improved neurological filtering.

Enhanced intensity range is achieved via technological means through the use of an [[image intensifier]], gain multiplication [[Charge-coupled device|CCD]], or other very low-noise and high-sensitivity array of [[photodetector]]s.

== Biological night vision ==
{{more|Adaptation (eye)}}
In biological night vision, molecules of [[rhodopsin]] in the [[Rod cell|rods]] of the [[eye]] undergo a change in shape as light is absorbed by them. Rhodopsin is the chemical that allows night-vision, and is extremely sensitive to light. Exposed to a spectrum of light, the pigment immediately bleaches, and it takes about 30 minutes to regenerate fully, but most of the [[Adaptation (eye)|adaptation]] occurs within the first five or ten minutes in the dark. Rhodopsin in the human rods is less sensitive to the longer red [[wavelengths]] of light, so many people use red light to help preserve night vision as it only slowly depletes the eye's rhodopsin stores in the [[rod cell|rods]] and instead is viewed by the [[cone cell|cones]].{{Citation needed|date=November 2009}}

Many animals have a tissue layer called the [[tapetum lucidum]] in the back of the [[eye]] that reflects light back through the [[retina]], increasing the amount of light available for it to capture. This is found in many [[nocturnal]] animals and some [[deep sea]] animals, and is the cause of [[tapetum lucidum|eyeshine]]. Humans lack a [[tapetum lucidum]].

Nocturnal mammals have rods with unique properties that make enhanced night vision possible. The nuclear pattern of their rods changes shortly after birth to become inverted. In contrast to contemporary rods, inverted rods have [[heterochromatin]] in the center of their nuclei and [[euchromatin]] and other transcription factors along the border. In addition, the [[outer nuclear layer]] (ONL) in nocturnal mammals is thick due to the millions of rods present to process the lower light intensities of a few [[photon]]s. Rather than being scattered, the light is passed to each nucleus individually.<ref>{{cite journal | author = Solovei, I. | coauthors = Kreysing, M., Lanctôt, C., Kösem, S., Peichl, L., Cremer, T., et al. | date = 2009, April 16 | title = Nuclear Architecture of Rod Photoreceptor Cells Adapts to Vision in Mammalian Evolution. | journal = Cell | volume = 137 | issue = 2 | pages = 945–953 | url = http://www.science-direct.com/science?_ob=ArticleURL&_udi=B6WSN-4W3325G-S&_user=10&_coverDate=04%2F17%2F2009&_rdoc=24&_fmt=high&_orig=browse&_srch=doc-info(%23toc%237051%232009%23998629997%231050051%23FLA%23display%23Volume)&_cdi=7051&_sort=d&_docanchor=&_ct=27&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3dd47ebb589ebdd767f957eea220aa01 | doi = 10.1016/j.cell.2009.01.052}}</ref> In fact, an animal's ability to see in [[low light]] levels may be similar to what humans see when using first- or perhaps second-generation [[image intensifier]]s.{{Citation needed|date=October 2008}}

Large size of the eye, and large size of the pupil relative to the eye, also contribute to night vision.
==Night vision technologies==

Night vision technologies can be broadly divided into three main categories:
* [[Image intensification]]
Image intensification technologies work on the principle of magnifying the amount of received photons from various natural sources such as [[starlight]] or moonlight. Examples of such technologies include night glasses and low light cameras.

* Active illumination
Active illumination technologies work on the principle of coupling imaging intensification technology with an active source of illumination in the [[near infrared]] (NIR) or shortwave infrared (SWIR) band. Examples of such technologies include low light cameras.

* [[Thermal imaging]]
Thermal imaging technology work by detecting the temperature difference between the background and the foreground objects.

== Night glasses ==
[[Image:Nachtsichtgeraet.jpg|thumb|right|Binoculars (night vision goggles on flight helmet) Note: the green color of the objective lenses is the reflection of the Light Interference Filters, not a glow.]]
Night glasses are [[telescope]]s or [[binoculars]] with a large diameter objective. Large lenses can gather and concentrate light, thus intensifying light with purely optical means and enabling the user to see better in the dark than with naked eye alone. Often night glasses also have a fairly large [[exit pupil]] of 7 mm or more to let all gathered light into the user's eye. However, many people can't take advantage of this because of the limited dilation of the human [[pupil]]. To overcome this, soldiers were sometimes issued [[atropine]] eye drops to dilate pupils. Before the introduction of image intensifiers, night glasses were the only method of night vision, and thus were widely utilized, especially at sea. Second World War era night glasses usually had a lens diameter of 56 mm or more with magnification of seven or eight. Major drawbacks of night glasses are their large size and weight.

== Active infrared ==

[[Image:Extreme-CCTV-Active-Infrared-Night-Vision.jpg|thumb|Imaging results with and without active-infrared.]]
Active infrared night vision combines infrared illumination of spectral range 700nm–1000nm – just below the visible spectrum of the human eye – with [[charge-coupled device|CCD]] cameras sensitive to this light. The resulting scene, which is apparently dark to a human observer, appears as a monochrome image on a normal display device.<ref>[http://www.cctv-information.co.uk/cgi-bin/index.cgi?url=http://www.cctv-information.co.uk/constant/infrared.html CCTV Information]</ref>

Because active infrared night vision systems can incorporate illuminators that produce high levels of infrared light, the resulting images are typically higher resolution than other night vision technologies.<ref>{{cite web|url=http://www.irinfo.org/articles/03_01_2007_grossman.html |title=Thermal Infrared vs. Active Infrared:
A New Technology Begins to be Commercialized}}</ref><ref>[http://www.extremecctv.com/products_video.php?vid=19 Extreme CCTV Surveillance Systems]</ref> Active infrared night vision is now commonly found in commercial, residential and government security applications, where it enables effective night time imaging under low light conditions. However, since active infrared light can be detected by night vision goggles, it is generally not used in tactical military operations.

==Laser range gated imaging==

Laser range gated imaging is another form of active night vision which utilizes the use of a high powered pulsed light source for illumination and imaging. Range gating is a technique which controls the laser pulses in conjunction with the shutter speed of the camera's detectors<ref>{{cite journal | author = J. Bentell , P. Nies , J. Cloots , J. Vermeiren , B. Grietens , O. David,A. Shurkun and R. Schneider| title = FLIP CHIPPED InGAaS PHOTODIODE ARRAYS FOR GATED IMAGING WITH EYE-SAFE LASERS | url = http://www.couriertronics.com/docs/Xenics/Gated%20Imaging.pdf }}</ref>. Gated imaging technology can be divided into ''single shot'', where the detector captures the image from a single light pulse to ''multi-shot'', where the detector integrates the light pulses from multiple shots to form an image.

One of the key advantages of this technique is the ability to perform target recognition as opposed to detection with thermal imaging.

== Thermal vision ==

Thermal imaging cameras are excellent tools for night vision. They perceive [[thermal radiation]] and do not need a source of illumination. They produce an image in the darkest of nights and can see through light fog, rain and smoke. Thermal imaging cameras make small temperature differences visible. Thermal imaging cameras are widely used to complement new or existing security networks.
See [[Thermographic camera]].

== Image intensifier ==

{{Main|Image intensifier}}

The image intensifier is a vacuum-tube based device that converts visible light from an image so that a dimly lit scene can be viewed by a camera or the naked eye. While many believe the light is "amplified," it is not. When IR light strikes a charged [[photocathode]] plate, electrons are emitted through a vacuum tube that strike the microchannel plate that cause the image screen to illuminate with a picture in the same pattern as the IR light that strikes the photocathode, and is on a frequency that the human eye can see. This is much like a [[Cathode ray tube|CRT]] [[television]], but instead of color guns the photocathode does the emitting.

The image is said to become "intensified" because the output visible light is brighter than the incoming IR light, and this effect directly relates to the difference in passive and active [[night vision goggles]]. Currently, the most popular image intensifier is the drop-in ANVIS module, though many other models and sizes are available at the market.

== Night vision devices ==

{{Main|Night vision device}}

A '''night vision device (NVD)''' is a device comprising an IR image intensifier tube in a rigid casing, commonly used by [[military forces]]. Lately night vision technology has become more widely available for civilian use, for example night vision filming and photography, night life observation, marine navigation and security. Some car manufacturers install portable night vision cameras on their vehicles.

A specific type of NVD, the night vision goggle (or NVG) is a night vision device with dual eyepieces; the device can utilize either one intensifier tube with the same image sent to both eyes, or a separate image intensifier tube for each eye. Night vision goggle combined with magnification lenses constitutes night vision binoculars. Other types include monocular night vision devices with only one eyepiece which may be mounted to firearms as night sights.

==Automotive night vision==
{{Main|Automotive night vision}}

== See also ==
* [[Thermographic camera]]
* [[Night operations (military)]]
* [[Low light level television]]

== Patents ==

* {{US patent|D248860|US D248860 - Night vision Pocketscope}}
* {{US patent|4707595|US 4707595 - Invisible light beam projector and night vision system}}
* {{US patent|4991183|US 4991183 - Target illuminators and systems employing same}}
* {{US patent|6075644|US 6075644 - Panoramic night vision goggles}}
* {{US patent|7173237|US 7173237 - http://xenonics.sc48.biz/press/articles/article.php?article_id=67}}
* {{US patent|6158879|US 6158879 - Infra-red reflector and illumination system}}

== External links ==
{{Commons category|Night Vision}}
<!-- Please do not add links here that do not conform to the guidance at [[WP:EL]] else yhey will be removed without discussion.-->
* [http://www.nvl.army.mil/ Night Vision & Electronic Sensors Directorate] - Fort Belvoir, [[Virginia]]

== References ==
{{reflist|2}}

{{Eye}}
{{CarDesign nav}}

[[Category:Infrared imaging]]

[[ar:رؤية ليلية]]
[[da:Nattesyn]]
[[de:Nachtsichtgerät]]
[[es:Visión nocturna]]
[[fa:دوربین دید در شب]]
[[fr:Nyctalopie]]
[[id:Penglihatan malam]]
[[it:Visione notturna]]
[[he:ראיית לילה]]
[[nl:Nyctalopie]]
[[ja:ナイトビジョン]]
[[no:Nattsyn]]
[[pt:Visão noturna]]
[[zh:夜視鏡]]

Revision as of 18:53, 17 March 2010

Large dicks