Jump to content

Petersson algebra

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Rgdboer (talk | contribs) at 01:17, 22 May 2016 (References: cat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a Petersson algebra is a composition algebra over a field constructed from an order-3 automorphism of a Hurwitz algebra. They were first constructed by Petersson (1969).

Construction

Suppose that C is a Hurwitz algebra and φ is an order 3 automorphism. Define the new product of x and y to be φ(x2(y). With this new product the algebra is called a Petersson algebra.

References

  • Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998), The book of involutions, Colloquium Publications, vol. 44, Providence, RI: American Mathematical Society, ISBN 0-8218-0904-0, Zbl 0955.16001
  • Petersson, Holger P. (1969), "Eine Identität fünften Grades, der gewisse Isotope von Kompositions-Algebren genügen", Math. Z. (in German), 109: 217–238, doi:10.1007/BF01111407, MR 0242910