From Wikipedia, the free encyclopedia
The complex self-constricting magnetic field lines and current paths in a Birkeland current that may develop in a plasma (Evolution of the Solar System , 1976)
Plasma parameters define various characteristics of a plasma , an electrically conductive collection of charged particles that responds collectively to electromagnetic forces . Plasma typically takes the form of neutral gas-like clouds or charged ion beams , but may also include dust and grains.[ 1] The behaviour of such particle systems can be studied statistically.[ 2]
Fundamental plasma parameters
All quantities are in Gaussian (cgs ) units except energy and temperature expressed in eV and ion mass expressed in units of the proton mass
μ
=
m
i
/
m
p
{\displaystyle \mu =m_{i}/m_{p}}
;
Z
{\displaystyle Z}
is charge state;
k
{\displaystyle k}
is Boltzmann's constant ;
K
{\displaystyle K}
is wavenumber;
ln
Λ
{\displaystyle \ln \Lambda }
is the Coulomb logarithm .
Frequencies
electron gyrofrequency , the angular frequency of the circular motion of an electron in the plane perpendicular to the magnetic field:
ω
c
e
=
e
B
/
m
e
=
1.76
×
10
11
B
rad/s
{\displaystyle \omega _{ce}=eB/m_{e}=1.76\times 10^{11}B\ {\mbox{rad/s}}\,}
ion gyrofrequency , the angular frequency of the circular motion of an ion in the plane perpendicular to the magnetic field:
ω
c
i
=
Z
e
B
/
m
i
c
=
9.58
×
10
3
Z
μ
−
1
B
rad/s
{\displaystyle \omega _{ci}=ZeB/m_{i}c=9.58\times 10^{3}Z\mu ^{-1}B\ {\mbox{rad/s}}\,}
electron plasma frequency , the frequency with which electrons oscillate (plasma oscillation ):
ω
p
e
=
(
4
π
n
e
e
2
/
m
e
)
1
/
2
=
5.64
×
10
4
n
e
1
/
2
rad/s
{\displaystyle \omega _{pe}=(4\pi n_{e}e^{2}/m_{e})^{1/2}=5.64\times 10^{4}n_{e}^{1/2}{\mbox{rad/s}}}
ω
p
i
=
(
4
π
n
i
Z
2
e
2
/
m
i
)
1
/
2
=
1.32
×
10
3
Z
μ
−
1
/
2
n
i
1
/
2
rad/s
{\displaystyle \omega _{pi}=(4\pi n_{i}Z^{2}e^{2}/m_{i})^{1/2}=1.32\times 10^{3}Z\mu ^{-1/2}n_{i}^{1/2}{\mbox{rad/s}}}
ν
T
e
=
(
e
K
E
/
m
e
)
1
/
2
=
7.26
×
10
8
K
1
/
2
E
1
/
2
s
−
1
{\displaystyle \nu _{Te}=(eKE/m_{e})^{1/2}=7.26\times 10^{8}K^{1/2}E^{1/2}{\mbox{s}}^{-1}\,}
ν
T
i
=
(
Z
e
K
E
/
m
i
)
1
/
2
=
1.69
×
10
7
Z
1
/
2
K
1
/
2
E
1
/
2
μ
−
1
/
2
s
−
1
{\displaystyle \nu _{Ti}=(ZeKE/m_{i})^{1/2}=1.69\times 10^{7}Z^{1/2}K^{1/2}E^{1/2}\mu ^{-1/2}{\mbox{s}}^{-1}\,}
electron collision rate in completely ionized plasmas :
ν
e
=
2.91
×
10
−
6
n
e
ln
Λ
T
e
−
3
/
2
s
−
1
{\displaystyle \nu _{e}=2.91\times 10^{-6}n_{e}\,\ln \Lambda \,T_{e}^{-3/2}{\mbox{s}}^{-1}}
ion collision rate in completely ionized plasmas :
ν
i
=
4.80
×
10
−
8
Z
4
μ
−
1
/
2
n
i
ln
Λ
T
i
−
3
/
2
s
−
1
{\displaystyle \nu _{i}=4.80\times 10^{-8}Z^{4}\mu ^{-1/2}n_{i}\,\ln \Lambda \,T_{i}^{-3/2}{\mbox{s}}^{-1}}
electron (ion) collision rate in slightly ionized plasmas :
ν
e
,
i
=
N
σ
e
,
i
v
¯
=
N
∫
0
∞
σ
(
v
)
e
,
i
f
(
v
)
v
d
v
{\displaystyle \nu _{e,i}=N{\overline {\sigma _{e,i}v}}=N\int \limits _{0}^{\infty }\sigma (v)_{e,i}f(v)vdv}
where
σ
(
v
)
e
,
i
{\displaystyle \sigma (v)_{e,i}}
is a collision crossection of the electron (ion) on the operating gas atoms (molecules),
f
(
v
)
{\displaystyle f(v)}
is the electron (ion)
distribution function in plasma, and
N
{\displaystyle N}
is an operating gas concentration.
Lengths
Λ
e
=
h
2
2
π
m
e
k
T
e
=
6.919
×
10
−
8
T
e
−
1
/
2
cm
{\displaystyle \Lambda _{e}={\sqrt {\frac {h^{2}}{2\pi m_{e}kT_{e}}}}=6.919\times 10^{-8}\,T_{e}^{-1/2}\,{\mbox{cm}}}
classical distance of closest approach , the closest that two particles with the elementary charge come to each other if they approach head-on and
each have a velocity typical of the temperature, ignoring quantum-mechanical effects:
e
2
/
k
T
=
1.44
×
10
−
7
T
−
1
cm
{\displaystyle e^{2}/kT=1.44\times 10^{-7}\,T^{-1}\,{\mbox{cm}}}
electron gyroradius , the radius of the circular motion of an electron in the plane perpendicular to the magnetic field:
r
e
=
v
T
e
/
ω
c
e
=
2.38
T
e
1
/
2
B
−
1
cm
{\displaystyle r_{e}=v_{Te}/\omega _{ce}=2.38\,T_{e}^{1/2}B^{-1}\,{\mbox{cm}}}
ion gyroradius , the radius of the circular motion of an ion in the plane perpendicular to the magnetic field:
r
i
=
v
T
i
/
ω
c
i
=
1.02
×
10
2
μ
1
/
2
Z
−
1
T
i
1
/
2
B
−
1
cm
{\displaystyle r_{i}=v_{Ti}/\omega _{ci}=1.02\times 10^{2}\,\mu ^{1/2}Z^{-1}T_{i}^{1/2}B^{-1}\,{\mbox{cm}}}
plasma skin depth , the depth in a plasma to which electromagnetic radiation can penetrate:
c
/
ω
p
e
=
5.31
×
10
5
n
e
−
1
/
2
cm
{\displaystyle c/\omega _{pe}=5.31\times 10^{5}\,n_{e}^{-1/2}\,{\mbox{cm}}}
Debye length , the scale over which electric fields are screened out by a redistribution of the electrons:
λ
D
=
(
k
T
/
4
π
n
e
2
)
1
/
2
=
7.43
×
10
2
T
1
/
2
n
−
1
/
2
cm
{\displaystyle \lambda _{D}=(kT/4\pi ne^{2})^{1/2}=7.43\times 10^{2}\,T^{1/2}n^{-1/2}\,{\mbox{cm}}}
Ion inertial length , the scale at which ions decouple from electrons and the magnetic field becomes frozen into the electron fluid rather than the bulk plasma:
d
i
=
c
/
ω
p
i
=
2.28
×
10
7
Z
−
1
(
μ
/
n
i
)
1
/
2
cm
{\displaystyle d_{i}=c/\omega _{pi}=2.28\times 10^{7}\,Z^{-1}(\mu /n_{i})^{1/2}\,{\mbox{cm}}}
Free path is the average distance between two subsequent collisions of the electron (ion) with plasma components:
λ
e
,
i
=
v
e
,
i
¯
ν
e
,
i
{\displaystyle \lambda _{e,i}={\frac {\overline {v_{e,i}}}{\nu _{e,i}}}}
where
v
e
,
i
¯
{\displaystyle {\overline {v_{e,i}}}}
is an average velocity of the electron (ion), and
ν
e
,
i
{\displaystyle \nu _{e,i}}
is the electron or ion collision rate .
Velocities
v
T
e
=
(
k
T
e
/
m
e
)
1
/
2
=
4.19
×
10
7
T
e
1
/
2
cm/s
{\displaystyle v_{Te}=(kT_{e}/m_{e})^{1/2}=4.19\times 10^{7}\,T_{e}^{1/2}\,{\mbox{cm/s}}}
v
T
i
=
(
k
T
i
/
m
i
)
1
/
2
=
9.79
×
10
5
μ
−
1
/
2
T
i
1
/
2
cm/s
{\displaystyle v_{Ti}=(kT_{i}/m_{i})^{1/2}=9.79\times 10^{5}\,\mu ^{-1/2}T_{i}^{1/2}\,{\mbox{cm/s}}}
ion sound velocity , the speed of the longitudinal waves resulting from the mass of the ions and the pressure of the electrons:
c
s
=
(
γ
Z
k
T
e
/
m
i
)
1
/
2
=
9.79
×
10
5
(
γ
Z
T
e
/
μ
)
1
/
2
cm/s
{\displaystyle c_{s}=(\gamma ZkT_{e}/m_{i})^{1/2}=9.79\times 10^{5}\,(\gamma ZT_{e}/\mu )^{1/2}\,{\mbox{cm/s}}}
,
where
γ
=
1
+
2
/
n
{\displaystyle \gamma =1+2/n}
is the adiabatic index , and here
n
{\displaystyle n}
is the number of degrees of freedom
Alfvén velocity , the speed of the waves resulting from the mass of the ions and the restoring force of the magnetic field:
v
A
=
B
/
(
4
π
n
i
m
i
)
1
/
2
=
2.18
×
10
11
μ
−
1
/
2
n
i
−
1
/
2
B
cm/s
{\displaystyle v_{A}=B/(4\pi n_{i}m_{i})^{1/2}=2.18\times 10^{11}\,\mu ^{-1/2}n_{i}^{-1/2}B\,{\mbox{cm/s}}}
Dimensionless
A 'sun in a test tube'. The Farnsworth-Hirsch Fusor during operation in so called "star mode" characterized by "rays" of glowing plasma which appear to emanate from the gaps in the inner grid.
square root of electron/proton mass ratio
(
m
e
/
m
p
)
1
/
2
=
2.33
×
10
−
2
=
1
/
42.9
{\displaystyle (m_{e}/m_{p})^{1/2}=2.33\times 10^{-2}=1/42.9\,}
number of particles in a Debye sphere
(
4
π
/
3
)
n
λ
D
3
=
1.72
×
10
9
T
3
/
2
n
−
1
/
2
{\displaystyle (4\pi /3)n\lambda _{D}^{3}=1.72\times 10^{9}\,T^{3/2}n^{-1/2}}
Alfvén velocity/speed of light
v
A
/
c
=
7.28
μ
−
1
/
2
n
i
−
1
/
2
B
{\displaystyle v_{A}/c=7.28\,\mu ^{-1/2}n_{i}^{-1/2}B}
electron plasma/gyrofrequency ratio
ω
p
e
/
ω
c
e
=
3.21
×
10
−
3
n
e
1
/
2
B
−
1
{\displaystyle \omega _{pe}/\omega _{ce}=3.21\times 10^{-3}\,n_{e}^{1/2}B^{-1}}
ion plasma/gyrofrequency ratio
ω
p
i
/
ω
c
i
=
0.137
μ
1
/
2
n
i
1
/
2
B
−
1
{\displaystyle \omega _{pi}/\omega _{ci}=0.137\,\mu ^{1/2}n_{i}^{1/2}B^{-1}}
thermal/magnetic pressure ratio ("beta ")
β
=
8
π
n
k
T
/
B
2
=
4.03
×
10
−
11
n
T
B
−
2
{\displaystyle \beta =8\pi nkT/B^{2}=4.03\times 10^{-11}\,nTB^{-2}}
magnetic/ion rest energy ratio
B
2
/
8
π
n
i
m
i
c
2
=
26.5
μ
−
1
n
i
−
1
B
2
{\displaystyle B^{2}/8\pi n_{i}m_{i}c^{2}=26.5\,\mu ^{-1}n_{i}^{-1}B^{2}}
Coulomb logarithm is an average coefficient taking into account far Coulomb interactions of charged particles in plasma.
Its value is evaluated in the nonrelativistic case approximately
for electrons
ln
Λ
≃
13.6
{\displaystyle \ln \Lambda \simeq 13.6}
,
for ions
ln
Λ
≃
6.8
{\displaystyle \ln \Lambda \simeq 6.8}
See also
References
^ Peratt, Anthony, Physics of the Plasma Universe (1992);
^ Parks, George K., Physics of Space Plasmas (2004, 2nd Ed.)