Jump to content

Pollock's conjectures

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by David Eppstein (talk | contribs) at 01:53, 24 December 2015 (more cats). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Pollock's conjectures are two closely related unproven conjectures in additive number theory. They were first stated in 1850 by Sir Frederick Pollock, better known as a lawyer and politician, but also a contributor of papers on mathematics to the Royal Society. These conjectures are a possible extension of the Fermat polygonal number theorem to three-dimensional figurate numbers, also called polyhedral numbers.

References

  • Dickson, L. E. (June 7, 2005). History of the Theory of Numbers, Vol. II: Diophantine Analysis. Dover. pp. 22–23. ISBN 0-486-44233-0.
  • Frederick Pollock (1850). "On the extension of the principle of Fermat's theorem on the polygonal numbers to the higher order of series whose ultimate differences are constant. With a new theorem proposed, applicable to all the orders". Abstracts of the Papers Communicated to the Royal Society of London. 5: 922–924. JSTOR 111069.