Pressure regulator

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 59.185.104.37 (talk) at 06:35, 6 February 2013. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Oxygen and MAPP gas cylinders with two-stage pressure regulators

A pressure regulator is a valve that automatically cuts off the flow of a liquid or gas at a certain pressure. Regulators are used to allow high-pressure fluid supply lines or tanks to be reduced to safe and/or usable pressures for various applications. Gas pressure regulators are used to regulate the gas pressure and are not appropriate for measuring flow rates. Flowmeters, Rotometers or Mass Flow Controllers should be used to accurately regulate gas flow rates.

Operation

Single-stage pressure regulator
Two-stage pressure regulator

A pressure regulator's primary function is to match the flow of gas through the regulator to the demand for gas placed upon the system. If the load flow decreases, then the regulator flow must decrease also. If the load flow increases, then the regulator flow must increase in order to keep the controlled pressure from decreasing due to a shortage of gas in the pressure system.

A pressure regulator includes a restricting element, a loading element, and a measuring element:

  • The restricting element is a type of valve. It can be a globe valve, butterfly valve, poppet valve, or any other type of valve that is capable of operating as a variable restriction to the flow.
  • The loading element applies the needed force to the restricting element. It can be any number of things such as a weight, a spring, a piston actuator, or more commonly the diaphragm actuator in combination with a spring.
  • The measuring element determines when the inlet flow is equal to the outlet flow. The diaphragm is often used as a measuring element because it can also serve as a combine element.

In the pictured single-stage regulator, a force balance is used on the diaphragm to control a poppet valve in order to regulate pressure. With no inlet pressure, the spring above the diaphragm pushes it down on the poppet valve, holding it open. Once inlet pressure is introduced, the open poppet allows flow to the diaphragm and pressure in the upper chamber increases until the diaphragm is pushed upward against the spring, causing the poppet to reduce flow, finally stopping further increase of pressure. By adjusting the top screw, the downward pressure on the diaphragm can be increased, requiring more pressure in the upper chamber to maintain equilibrium. In this way, the outlet pressure of the regulator is controlled.

Single Stage Regulator

When the spindle of the cylinder is opened slowly, the high pressure gas from the cylinder enters into the regulator through the inlet valve. The gas then enters the body of regulator, which is controlled by the needle valve. The pressure inside the regulator rises, which pushes the diaphragm and the valve to which it is attached, closes the valve and prevents any more gas from entering the regulator. The outlet side is fitted with a pressure gauge, which indicates the working pressure on the blowpipe. Upon the gas being drawn ‘’off’’ from outlet side the pressure inside the regulator body falls. The diaphragm is pushed back by the spring and the valve opens, letting more gas in from the cylinder. The pressure in the body therefore depends on the pressure of springs and this can be adjusted by means of a regulator knob.

Double Stage Regulator

Two stage regulators are nothing but two regulators in one that operate to reduce the pressure progressively in two stages instead of one. The first stage, which is preset, reduces the pressure of the cylinder to an intermediate stage; gas at that pressure passes into the second stage. The gas now emerges at a pressure (working pressure) set by the pressure adjusting control knob attached to the diaphragm. Two stage regulators have two safety valves, so that if there is any excess pressure there will be no explosion. A major objection to the single stage regulator is the need for frequent torch adjustment. If the cylinder pressure falls the regulator pressure likewise falls necessitating torch adjustment. In the two stage regulator, there is automatic compensation for any drop in the cylinder pressure. Single stage regulator may be used with pipe lines and cylinders. Two stage regulators are used with cylinder and manifolds.

Applications

Air Compressors

Air compressors are used in industrial, commercial, and home workshop environments to perform an assortment of jobs including blowing things clean; running air powered tools; and inflating things like tires, balls, etc. Regulators are used on the compressor itself to ensure that the tank pressure never reaches unsafe levels and to allow the user to adjust the pressure coming out of the tank to match what is needed for the task. Often, when one large compressor is used to supply compressed air for multiple uses (often referred to as "shop air" if built as a permanent installation of pipes throughout a building), numerous additional regulators will be used to ensure that each separate tool or function receives the appropriate pressure it needs. This is important because some air tools, or uses for compressed air, require pressures that may cause damage to tools or materials in other cases.

Water pressure reduction

Often, water enters water-using appliances at fluctuating pressures, especially in remote locations, and industrial settings. This pressure often needs to be kept within a range to avoid damage to appliances, or accidents involving burst pipes/conduits. A single-stage regulator is sufficient in accuracy due to the high error tolerance of most such appliances.

Oxy-fuel welding and cutting

Oxy-fuel welding and cutting processes require gases at specific pressures, and regulators will generally be used to reduce the high pressures of storage cylinders to those usable for cutting and welding. Oxy-gas regulators usually have two stages: The first stage of the regulator releases the gas at a constant rate from the cylinder despite the pressure in the cylinder becoming less as the gas is released. The second stage of the regulator controls the pressure reduction from the intermediate pressure to low pressure. It is constant flow. The valve assembly has two pressure gauges, one indicating cylinder pressure, the other indicating hose pressure.

Propane/LP Gas

All propane and LP Gas applications require the use of a regulator. Because pressures in propane tanks can fluctuate significantly, regulators must be present to deliver a steady flow pressure to downstream appliances. These regulators normally compensate for tank pressures between 30 - 200psig and commonly deliver 11 inches water column (0.4 psig) for residential applications and 35 inches of water column (1.3 psig) for industrial applications. Propane regulators differ in size and shape, delivery pressure and adjust-ability but are uniform in their purpose to deliver a constant outlet pressure for downstream requirements. As is the case in all regulators, outlet pressure is lower than inlet pressure.

Gas powered vehicles

No matter what type of motor (internal combustion engine or fuel cell electric powertrain) a specific pressure regulator will be necessary to bring the stored gas (CNG, Hydrogen) pressure from 700, 500, 350 or 200 bar (or 70, 50, 35 and 20 MPa) to operating pressure in addressing all safety and operational requirements.

Recreational vehicles

For recreational vehicles with plumbing, a pressure regulator is a necessity. When camping, a source of water may have an enormous pressure level, particularly if it comes from a tank that is at a much higher elevation than the campground. Water pressure is dependent on how far the water must fall. Without a pressure regulator, the intense pressure encountered at some campgrounds in mountainous areas may be enough to burst the camper's water pipes or unseat the plumbing joints, causing flooding. Pressure regulators for this purpose are typically sold as small screw-on accessories that fit inline with the hoses used to connect an RV to the water supply, which are almost always screw-thread-compatible with the common garden hose.

Breathable air supply

Pressure regulators are used with air tanks for SCUBA diving. The tank may contain pressures well in excess of 2,000psig, which could cause a fatal barotrauma injury to a person breathing it directly. A regulator allows only a sustained flow of air at the ambient pressure (which varies by depth in the water).

Mining Industry

As the pressure builds rapidly in relation to depth, underground mining operations require a fairly complex water system with pressure reducing valves. These devices must be installed at a certain distance interval, usually 600 feet (180 m).[citation needed] Without such valves, pipes would easily burst and pressure would be too great for equipment operation.

Oil and Gas Industry

See also Blow Out Preventer

External links