Jump to content

RRQR factorization

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 130.92.9.57 (talk) at 11:01, 22 September 2014 (Removed the broken link of the first reference and updated it with another one). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

An RRQR factorization or rank-revealing QR factorization is a matrix decomposition algorithm based on the QR factorization which can be used to determine the rank of a matrix.[1] The SVD can be used to generate an RRQR, but it is not an efficient method to do so.[2] A RRQR implementation is available for MATLAB.[3]

References

  1. ^ Gu, Ming; Stanley C. Eisenstat (July 1996). "Efficient algorithms for computing a strong rank-revealing QR factorization" (PDF). SIAM Journal on Scientific Computing. 17 (4): 848–869. doi:10.1137/0917055. Retrieved 22 September 2014.
  2. ^ Hong, Y.P.; C.-T. Pan (January 1992). "Rank-Revealing QR Factorizations and the Singular Value Decomposition". Mathematics of Computation. 58 (197): 213–232. doi:10.2307/2153029. Retrieved 11 July 2011.
  3. ^ "RRQR Factorization" (PDF). 29 March 2007. Retrieved 2 April 2011.