Jump to content

Reversible diffusion

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BG19bot (talk | contribs) at 23:16, 28 March 2016 (Kolmogorov's characterization of reversible diffusions: Remove blank line(s) between list items per WP:LISTGAP to fix an accessibility issue for users of screen readers. Do WP:GENFIXES and cleanup if needed. Discuss this at [[Wikipedia...). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a reversible diffusion is a specific example of a reversible stochastic process. Reversible diffusions have an elegant characterization due to the Russian mathematician Andrey Nikolaevich Kolmogorov.

Kolmogorov's characterization of reversible diffusions

Let B denote a d-dimensional standard Brownian motion; let b : Rd → Rd be a Lipschitz continuous vector field. Let X : [0, +∞) × Ω → Rd be an Itō diffusion defined on a probability space (Ω, Σ, P) and solving the Itō stochastic differential equation

with square-integrable initial condition, i.e. X0 ∈ L2(Ω, Σ, PRd). Then the following are equivalent:

and

(Of course, the condition that b be the negative of the gradient of Φ only determines Φ up to an additive constant; this constant may be chosen so that exp(−2Φ(·)) is a probability density function with integral 1.)

References

  • Voß, Jochen (2004). Some large deviation results for diffusion processes. Universität Kaiserslautern: PhD thesis.{{cite book}}: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) (See theorem 1.4)