Jump to content

SIESTA (computer program)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Forbes72 (talk | contribs) at 17:42, 8 March 2016 (removed Category:Density functional theory; added Category:Density functional theory software using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is an original method and a software implementation for performing electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids.

It uses a density functional theory code that predicts the physical properties of a collection of atoms.

Properties that can be predicted using the code include Kohn–Sham band-structures, electron density, and Mulliken populations.

Applications

SIESTA has been applied to study the structure, dynamics and electronic properties of large biomolecules and bimolecular assemblies.[1][2][3]

See also

References

  • Izquierdo, J.; Vega, A.; Balbás, L.; Sánchez-Portal, Daniel; Junquera, Javier; Artacho, Emilio; Soler, Jose; Ordejón, Pablo (2000). "Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems". Physical Review B. 61 (20): 13639. Bibcode:2000PhRvB..6113639I. doi:10.1103/PhysRevB.61.13639.
  • Robles, R.; Izquierdo, J.; Vega, A.; Balbás, L. (2001). "All-electron and pseudopotential study of the spin-polarization of the V(001) surface: LDA versus GGA". Physical Review B. 63 (17). arXiv:cond-mat/0012064. Bibcode:2001PhRvB..63q2406R. doi:10.1103/PhysRevB.63.172406.
  • Soler, José M.; Artacho, Emilio; Gale, Julian D; García, Alberto; Junquera, Javier; Ordejón, Pablo; Sánchez-Portal, Daniel (2002). "The SIESTA method for ab initio order-N materials simulation" (abstract). Journal of Physics: Condensed Matter. 14 (11): 2745–2779. arXiv:cond-mat/0104182. Bibcode:2002JPCM...14.2745S. doi:10.1088/0953-8984/14/11/302.
  1. ^ Mashaghi A et al. Hydration strongly affects the molecular and electronic structure of membrane phospholipids J. Chem. Phys. 136, 114709 (2012) [1]
  2. ^ Mashaghi A et al. Interfacial Water Facilitates Energy Transfer by Inducing Extended Vibrations in Membrane Lipids, J. Phys. Chem. B, 2012, 116 (22), pp 6455–6460 [2]
  3. ^ Mashaghi A et al. Enhanced Autoionization of Water at Phospholipid Interfaces. J. Phys. Chem. C, 2013, 117 (1), pp 510–514 [3]