Sandwich compound

From Wikipedia, the free encyclopedia
  (Redirected from Sandwich compounds)
Jump to: navigation, search
Space-filling model of ferrocene, the archetypal sandwich compound

In organometallic chemistry, a sandwich compound is a chemical compound featuring a metal bound by haptic covalent bonds to two arene ligands. The arenes have the formula CnHn, substituted derivatives (for example Cn(CH3)n) and heterocyclic derivatives (for example BCnHn+1). Because the metal is usually situated between the two rings, it is said to be "sandwiched". A special class of sandwich complexes are the metallocenes.

The term sandwich compound was introduced in organometallic nomenclature in during the mid-1950s in a report by J. D. Dunitz, L. E. Orgel and R. A. Rich, who confirmed the structure of ferrocene by X-ray crystallography.[1] The correct structure had been proposed several years previously by Robert Burns Woodward and, separately, by Ernst Otto Fischer. The structure helped explain puzzles about ferrocene's conformers, the molecule features an iron atom sandwiched between two parallel cyclopentadienyl rings. This result further demonstrated the power of X-ray crystallography and accelerated the growth of organometallic chemistry.[2]

Classes of sandwich compounds[edit]

The best known members are the metallocenes of the formula M(C5H5)2 where M = Cr, Fe, Co, Ni, Pb, Zr, Ru, Rh, Sm, Ti, V, Mo, W, Zn. These species are also called bis(cyclopentadienyl)metal complexes. Other arenes can serve as ligands as well.

  • Mixed cyclopentadienyl complexes: M(C5H5)(CnHn). Some examples are Ti(C5H5)(C7H7) and (C60)Fe(C5H5Ph5) where the fullerene ligand is acting as a cyclopentadienyl analogue.
  • Bis(benzene) complexes: M(C6H6)2, the best known example being bis(benzene)chromium.
  • Bis(cyclooctatetraenyl) complexes: M(C8H8)2, such as U(C8H8)2 and Th(C8H8)2 (both actinocenes).
  • Bis(cyclobutadienyl) complexes: M(C4H4)2, such as Fe(C4H4)2.

Sandwich complexes are even known containing purely inorganic ligands, such as Fe(C5Me5)(P5) and [(P5)2Ti]2−.[3]

Half-sandwich compounds[edit]

Monometallic half-sandwich compounds[edit]

Ball-and-stick model of methylcyclopentadienyl manganese tricarbonyl, a "piano stool" compound

Metallocenes including just one facially-bound planar organic ligand instead of two gives rise to a still larger family of half-sandwich compounds. The most famous example is probably methylcyclopentadienyl manganese tricarbonyl. Such species are occasionally referred to as piano-stool compounds, at least when there are three diatomic ligands in addition to the hydrocarbon "seat" of the piano stool. The name derives from the similarity of the structure to such a "stool" with the seat being a facial planar organic compound, e.g. benzene or cyclopentadiene, and the legs being ligands such as CO or allyl.[4][5]

Dimetallic half-sandwich compounds[edit]

Compounds such as the cyclopentadienyliron dicarbonyl dimer and cyclopentadienylmolybdenumtricarbonyl dimer can be considered a special case of half-sandwiches, except that they are dimetallic.[4] A structurally related species is [Ru(C6H6)Cl2]2.

Multidecker sandwiches[edit]

The first multidecker sandwich complex was the dicationic triscyclopentadienyl dinickel complex [Ni2Cp3](BF4)2. Since that discovery, many related multidecker sandwich compounds have been discovered, especially triple deckers.[6] A versatile method involves the attachment of Cp*Ru+ to preformed sandwich complexes.[7]

Inverse sandwiches[edit]

In these anti-bimetallic compounds, the metals are found to be bridged by a single carbocyclic ring. Examples include {(THF)3Ca}2(1,3,5-triphenylbenzene)[8] and {(Ar)Sn}2COT.

Perylene–tetrapalladium sandwich complex

Double- and multimetallic sandwich compounds[edit]

Another family of sandwich compound involves more than one metal sandwiched between two carbocyclic rings. Examples of the double sandwich include V2(indenyl)2,[9] Ni2(COT)2[10] and Cr2(pentalene)2. Depicted at right is an example of a multimetallic sandwich compound, which has four palladium atoms joined in a chain sandwiched between two perylene units.[11] The counterions are bulky tetraarylborates.

Applications[edit]

Ferrocene and methylcyclopentadienyl manganese tricarbonyl have been used as antiknock agents. Certain bent metallocenes of zirconium and hafnium are effective precatalysts for the polymerization of propylene. Many half sandwich complexes of ruthenium, such as those derived from (cymene)ruthenium dichloride dimer catalyse transfer hydrogenation, a useful reaction in organic synthesis.[12]

Metallocenes3.png

References[edit]

  1. ^ Dunitz, J.; Orgel, L.; Rich, A. (1956). "The crystal structure of ferrocene". Acta Crystallogr. 9 (4): 373–5. doi:10.1107/S0365110X56001091. 
  2. ^ Miessler, Gary L.; Tarr, Donald A. (2004). Inorganic Chemistry. Upper Saddle River, NJ: Pearson Education. ISBN 0-13-035471-6. 
  3. ^ Urnezius, E.; Brennessel, W. W.; Cramer, C. J.; Ellis, J. E.; Schleyer, P. von R. (2002). "A Carbon-Free Sandwich Complex [(P5)2Ti]2−". Science 295 (5556): 832–834. Bibcode:2002Sci...295..832U. doi:10.1126/science.1067325. PMID 11823635. 
  4. ^ a b Begley, Michael J.; Puntambekar, Shakher G.; Anthony H., Wright (1987). "A di-iron–anthracene complex via ultrasonics". J. Chem. Soc., Chem. Commun. 1987: 1251–1252. doi:10.1039/C39870001251. 
  5. ^ Begley, Michael J.; Puntambekar, Shakher G.; Wright, Anthony H. (1989). "Synthesis and reactivity of a new class of half-sandwich arene–iron complex: structure of [C6H3Me3Fe(C3H5)(CO)]PF6". J. Organomet. Chem. 362 (1–2): C11–C14. doi:10.1016/0022-328X(89)85301-X. 
  6. ^ Beck, V.; O'Hare, D. (2004). "Triple-decker transition metal complexes bridged by a single carbocyclic ring". J. Organomet. Chem. 689: 3920–3938. doi:10.1016/j.jorganchem.2004.06.011. 
  7. ^ Fagan, P. J.; Ward, M. D.; Calabrese, J. C. (1989). "Molecular engineering of solid-state materials: organometallic building blocks". J. Am. Chem. Soc. 111 (5): 1698–719. doi:10.1021/ja00187a024. 
  8. ^ Krieck, Sven; Gorls, Helmar; Yu, Lian; Reiher, Markus; Westerhausen, Matthias (2009). "Stable "Inverse" Sandwich Complex with Unprecedented Organocalcium(I): Crystal Structures of [(thf)2Mg(Br)–C6H2–2,4,6-Ph3] and [(thf)3Ca{μ-C6H3–1,3,5-Ph3}Ca(thf)3]". J. Am. Chem. Soc. (Article) 131: 2977–2985. doi:10.1021/ja808524y. 
  9. ^ Jonas, Klaus; Rüsseler, Wolfgang; Krüger, Carl; Raabe, Eleonore (1986). "Synthesis of Diindenyldivanadium—a New Variant of the Reductive Degradation of Metallocenes and Related Compounds". Angew. Chem. Int. Ed. Engl. (Communication) 25: 928–929. doi:10.1002/anie.198609281. 
  10. ^ Brauer, D. J.; Kruger, C. (1976). "The stereochemistry of transition metal cyclooctatetraenyl complexes: di-h3,h3′-cyclooctatetraenedinickel, a sandwich compound with two enveloped nickel atoms". J. Organomet. Chem. 122: 265–273. doi:10.1016/S0022-328X(00)80619-1. 
  11. ^ Murahashi, Tetsuro; Uemura, Tomohito; Kurosawa, Hideo (2003). "Perylene–Tetrapalladium Sandwich Complexes". J. Am. Chem. Soc. (Communication) 125 (28): 8436–8437. doi:10.1021/ja0358246. PMID 12848540. 
  12. ^ Ikariya, Takao; Hashiguchi, Shohei; Murata, Kunihiko; Noyori, Ryoji (2005). "Preparation of Optically Active (R,R)-Hydrobenzoin from Benzoin or Benzil". Org. Synth. 82: 10.