Jump to content

Shielding effect

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ReyHahn (talk | contribs) at 21:50, 22 August 2018 (Undid revision 855816071 by 160.238.72.50 (talk) not clear wrong syntax). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The shielding effect sometimes referred to as atomic shielding describes the attraction between an electron and the nucleus in any atom with more than one electron. The shielding effect can be defined as a reduction in the effective nuclear charge on the electron cloud, due to a difference in the attraction forces on the electrons in the atom. It is a special case of electric-field screening.

Order of shielding effect

The order of the orbitals per shielding strength is:

Reason

In hydrogen, or any other atom in group 1A of the periodic table (those with only one valence electron), the force on the electron is just as large as the electromagnetic attraction from the nucleus of the atom. However, when more electrons are involved, each electron (in the nth-shell) experiences not only the electromagnetic attraction from the positive nucleus, but also repulsion forces from other electrons in shells from 1 to n. This causes the net force on electrons in outer shells to be significantly smaller in magnitude; therefore, these electrons are not as strongly bonded to the nucleus as electrons closer to the nucleus. This phenomenon is often referred to as the orbital penetration effect. The shielding theory also contributes to the explanation of why valence-shell electrons are more easily removed from the atom.

The size of the shielding effect is difficult to calculate precisely due to effects from quantum mechanics. As an approximation, we can estimate the effective nuclear charge on each electron by the following:

Where Z is the number of protons in the nucleus and is the average number of electrons between the nucleus and the electron in question. can be found by using quantum chemistry and the Schrödinger equation, or by using Slater's empirical formulas.

In Rutherford backscattering spectroscopy the correction due to electron screening modifies the Coulomb repulsion between the incident ion and the target nucleus at large distances. It is the repulsion effect is cause by the inner electron to the outer electron

See also

References

  • L. Brown, Theodore; H. Eugene LeMay Jr; Bruce E. Bursten; Julia R. Burdge (2003). Chemistry: The Central Science (8th ed.). US: Pearson Education. ISBN 0-13-061142-5. Archived from the original on 2011-07-24. {{cite book}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  • Thomas, Dan (1997-10-09). "Shielding of Electrons in Atoms from H (Z=1) to Lw (Z=103)". University of Guelph. Retrieved 2018-07-12. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  • Peter Atkins & Loretta Jones, Chemical principles: the quest for insight [Variation in shielding effect]