Sodium naphthalene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 5.2.200.163 (talk) at 12:28, 30 September 2016. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Sodium naphthalene
Names
Preferred IUPAC name
Sodium naphthalenide
Systematic IUPAC name
Sodium naphthalen-1-ide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.020.420 Edit this at Wikidata
EC Number
  • 222-460-3
  • InChI=1S/C10H8.Na/c1-2-6-10-8-4-3-7-9(10)5-1;/h1-8H;/q-1;+1 ☒N
    Key: NCVIXNVCXNGGBW-UHFFFAOYSA-N ☒N
  • InChI=1/C10H8.Na/c1-2-6-10-8-4-3-7-9(10)5-1;/h1-8H;/q-1;+1
    Key: NCVIXNVCXNGGBW-UHFFFAOYAJ
  • c1ccc2=C[CH][CH-]C=c2c1.[Na+]
Properties
C10H8Na
Molar mass 151.164 g·mol−1
Related compounds
Other anions
Sodium cyclopentadienide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Sodium naphthalenide, also known as sodium naphthalide, is an organic salt with the formula Na+C10H8. In the research laboratory, it is used as a reductant in the synthesis of organic, organometallic, and inorganic chemistry. It has not been isolated as a solid, but it is usually prepared fresh before use.[1]

Preparation and properties

The alkali metal naphthalenides are prepared by stirring the metal with naphthalene in an ethereal solvent, usually as tetrahydrofuran or dimethoxyethane. The resulting salt is dark green.[2][3][4] The anion is a radical, giving a strong EPR signal near g = 2.0, with a reduction potential near -2.5 V vs NHE. Its deep green color arises from absorptions centered at 463, 735 nm.[1]

The anion is strongly basic, and a typical degradation pathway involves reaction with water and related protic sources. These reactions afford dihydronaphthalene:

2 NaC10H8 + 2 H2O → C10H10 + C10H8 + 2 NaOH

Related reagents

For some synthetic operations, sodium naphthalenide is excessively reducing (too negative), in which case milder reductants are selected. Larger rings give milder reductants. Sodium acenaphthenide is milder by about 0.75 V.

The corresponding lithium salt, lithium naphthalenide, is also known.

A solution of lithium naphthalenide, a related compound, in tetrahydrofuran

References

  1. ^ a b N. G. Connelly and W. E. Geiger, "Chemical Redox Agents for Organometallic Chemistry", Chem. Rev. 1996, 96, 877-910. doi:10.1021/cr940053x
  2. ^ Corey, E. J.; Gross, Andrew W. (1993). "tert-Butyl-tert-octylamine". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 8, p. 93.
  3. ^ Cotton, F. Albert; Wilkinson, Geoffrey (1988), Advanced Inorganic Chemistry (5th ed.), New York: Wiley-Interscience, p. 139, ISBN 0-471-84997-9
  4. ^ Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. p. 111. ISBN 978-0-08-022057-4.