# Spence's function

The dilogarithm along the real axis

In mathematics, Spence's function, or dilogarithm, denoted as Li2(z), is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:

${\displaystyle \operatorname {Li} _{2}(z)=-\int _{0}^{z}{\ln(1-u) \over u}\,\mathrm {d} u{\text{, }}z\in \mathbb {C} }$

and its reflection. For ${\displaystyle |z|<1}$ an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):

${\displaystyle \operatorname {Li} _{2}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{2}}.}$

Alternatively, the dilogarithm function is sometimes defined as

${\displaystyle \int _{1}^{v}{\frac {\ln t}{1-t}}\mathrm {d} t=\operatorname {Li} _{2}(1-v).}$

In hyperbolic geometry the dilogarithm ${\displaystyle \operatorname {Li} _{2}(z)}$ occurs as the hyperbolic volume of an ideal simplex whose ideal vertices have cross ratio ${\displaystyle z}$. Lobachevsky's function and Clausen's function are closely related functions.

William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.[1] He was at school with John Galt,[2] who later wrote a biographical essay on Spence.

## Identities

${\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(-z)={\frac {1}{2}}\operatorname {Li} _{2}(z^{2})}$[3]
${\displaystyle \operatorname {Li} _{2}(1-z)+\operatorname {Li} _{2}\left(1-{\frac {1}{z}}\right)=-{\frac {\ln ^{2}z}{2}}}$[4]
${\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1-z)={\frac {{\pi }^{2}}{6}}-\ln z\cdot \ln(1-z)}$[3]
${\displaystyle \operatorname {Li} _{2}(-z)-\operatorname {Li} _{2}(1-z)+{\frac {1}{2}}\operatorname {Li} _{2}(1-z^{2})=-{\frac {{\pi }^{2}}{12}}-\ln z\cdot \ln(z+1)}$[4]
${\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}\left({\frac {1}{z}}\right)=-{\frac {\pi ^{2}}{6}}-{\frac {1}{2}}\ln ^{2}(-z)}$[3]

## Particular value identities

${\displaystyle \operatorname {Li} _{2}\left({\frac {1}{3}}\right)-{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}-{\frac {\ln ^{2}3}{6}}}$[4]
${\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{2}}\right)+{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+\ln 2\cdot \ln 3-{\frac {\ln ^{2}2}{2}}-{\frac {\ln ^{2}3}{3}}}$[4]
${\displaystyle \operatorname {Li} _{2}\left({\frac {1}{4}}\right)+{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}+2\ln 2\ln 3-2\ln ^{2}2-{\frac {2}{3}}\ln ^{2}3}$ [4]
${\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{3}}\right)-{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+{\frac {1}{6}}\ln ^{2}3}$ [4]
${\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{8}}\right)+\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {1}{2}}\ln ^{2}{\frac {9}{8}}}$[4]
${\displaystyle 36\operatorname {Li} _{2}\left({\frac {1}{2}}\right)-36\operatorname {Li} _{2}\left({\frac {1}{4}}\right)-12\operatorname {Li} _{2}\left({\frac {1}{8}}\right)+6\operatorname {Li} _{2}\left({\frac {1}{64}}\right)={\pi }^{2}}$

## Special values

${\displaystyle \operatorname {Li} _{2}(-1)=-{\frac {{\pi }^{2}}{12}}}$
${\displaystyle \operatorname {Li} _{2}(0)=0}$
${\displaystyle \operatorname {Li} _{2}\left({\frac {1}{2}}\right)={\frac {{\pi }^{2}}{12}}-{\frac {\ln ^{2}2}{2}}}$
${\displaystyle \operatorname {Li} _{2}(1)={\frac {{\pi }^{2}}{6}}}$
${\displaystyle \operatorname {Li} _{2}(2)={\frac {{\pi }^{2}}{4}}-i\pi \ln 2}$
${\displaystyle \operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}-1}{2}}\right)=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}$
${\displaystyle =-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\operatorname {arcsch} ^{2}2}$
${\displaystyle \operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}+1}{2}}\right)=-{\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}}$
${\displaystyle =-{\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2}$
${\displaystyle \operatorname {Li} _{2}\left({\frac {3-{\sqrt {5}}}{2}}\right)={\frac {{\pi }^{2}}{15}}-\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}$
${\displaystyle ={\frac {{\pi }^{2}}{15}}-\operatorname {arcsch} ^{2}2}$
${\displaystyle \operatorname {Li} _{2}\left({\frac {{\sqrt {5}}-1}{2}}\right)={\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}$
${\displaystyle ={\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2}$

## In Particle Physics

Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:

${\displaystyle \operatorname {\Phi } (x)=-\int _{0}^{x}{\frac {\ln |1-u|}{u}}\,\mathrm {d} u={\begin{cases}\operatorname {Li} _{2}(x),&x\leq 1;\\{\frac {\pi ^{2}}{3}}-{\frac {1}{2}}\ln ^{2}(x)-\operatorname {Li} _{2}({\frac {1}{x}}),&x>1.\end{cases}}}$