From Wikipedia, the free encyclopedia
Spherical pendulum: angles and velocities.
In physics , a spherical pendulum is a higher dimensional analogue of the pendulum . It consists of a mass m moving without friction on the surface of a sphere . The only forces acting on the mass are the reaction from the sphere and gravity .
Owing to the spherical geometry of the problem, spherical coordinates are used to describe the position of the mass in terms of (r , θ , φ ), where r is fixed.
Lagrangian mechanics
The Lagrangian is [ 1]
L
=
1
2
m
r
2
(
θ
˙
2
+
sin
2
θ
ϕ
˙
2
)
+
m
g
r
cos
θ
.
{\displaystyle L={\frac {1}{2}}mr^{2}\left({\dot {\theta }}^{2}+\sin ^{2}\theta \ {\dot {\phi }}^{2}\right)+mgr\cos \theta .}
The Euler–Lagrange equations give :
d
d
t
(
m
r
2
θ
˙
)
−
m
r
2
sin
θ
cos
θ
ϕ
˙
2
+
m
g
r
sin
θ
=
0
{\displaystyle {\frac {d}{dt}}\left(mr^{2}{\dot {\theta }}\right)-mr^{2}\sin \theta \cos \theta {\dot {\phi }}^{2}+mgr\sin \theta =0}
and
d
d
t
(
m
r
2
sin
2
θ
ϕ
˙
)
=
0
{\displaystyle {\frac {d}{dt}}\left(mr^{2}\sin ^{2}\theta \,{\dot {\phi }}\right)=0}
showing that angular momentum is conserved.
Hamiltonian mechanics
The Hamiltonian is
H
=
P
θ
θ
˙
+
P
ϕ
ϕ
˙
−
L
{\displaystyle H=P_{\theta }{\dot {\theta }}+P_{\phi }{\dot {\phi }}-L}
where
P
θ
=
∂
L
∂
θ
˙
=
m
r
2
θ
˙
{\displaystyle P_{\theta }={\frac {\partial L}{\partial {\dot {\theta }}}}=mr^{2}{\dot {\theta }}}
and
P
ϕ
=
∂
L
∂
ϕ
˙
=
m
r
2
ϕ
˙
sin
2
θ
{\displaystyle P_{\phi }={\frac {\partial L}{\partial {\dot {\phi }}}}=mr^{2}{\dot {\phi }}\sin ^{2}\theta }
See also
References
^ Landau, Lev Davidovich; Evgenii Mikhailovich Lifshitz (1976). Course of Theoretical Physics: Volume 1 Mechanics . Butterworth-Heinenann. pp. 33–34. ISBN 0750628960 .