Jump to content

Sub-Gaussian distribution

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by John of Reading (talk | contribs) at 12:55, 10 October 2016 (References: Typo/general fixes, replaced: Ukranian → Ukrainian using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In probability theory, a sub-Gaussian random variable is a random variable with strong tail decay property. Informally, the tails of a sub-Gaussian random variable are dominated by (i.e. decay at least as fast as) the tails of a Gaussian.

Formally, is called sub-Gaussian if there are positive constants such that for any  :

The sub-Gaussian random variables with the following norm:

form a Birnbaum–Orlicz space.

Equivalent properties

The following properties are equivalent:

  • is sub-Gaussian
  • -condition: .
  • Laplace transform condition: .
  • Moment condition: .

References

  • Kahane, J.P. (1960). "Propriétés locales des fonctions à séries de Fourier aléatoires". Stud. Math. Vol. 19. pp. 1–25. [1].
  • Buldygin, V.V.; Kozachenko, Yu.V. (1980). "Sub-Gaussian random variables". Ukrainian Math. J. Vol. 32. pp. 483–489. [2].
  • Ledoux, Michel; Talagrand, Michel (1991). Probability in Banach Spaces. Springer-Verlag.
  • Stromberg, K.R. (1994). Probability for Analysts. Chapman & Hall/CRC.
  • Litvak, A.E.; Pajor, A.; Rudelson, M.; Tomczak-Jaegermann, N. (2005). "Smallest singular value of random matrices and geometry of random polytopes". Adv. Math. Vol. 195. pp. 491–523. PDF.
  • Rudelson, Mark; Vershynin, Roman (2010). "Non-asymptotic theory of random matrices: extreme singular values". arXiv:1003.2990. PDF.
  • Rivasplata, O. (2012). "Subgaussian random variables: An expository note". Unpublished. PDF.