Subduction erosion

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Mamayuco (talk | contribs) at 18:09, 22 September 2016 (→‎References). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tectonic erosion or subduction erosion is the loss of crust from an overriding tectonic plate due to subduction.[1] Two types of tectonic erosion exists: frontal erosion at the outer margin of a plate and basal erosion at the base of the plate's crust.[1] Basal erosion causes a thinning of the overriding plate.[2] When frontal tectonic erosion consumes a crustal block at the outer margin it may induce a domino effect on upper crustal tectonics causing the remaining blocks to fault and tilt to fill the “gap” left by the consumed block.[2] Subduction ersion is believed to be enhanced by high convergence rates and low sediment supply to the trench.[1]

Before the Neoproterozoic, subduction erosion rates were probably higher than at present due to higher convergence rates. A scarcity of blueschists from this time seems to support this view.[1]

The following features and processes have been associated with subduction erosion:

See also

References

  1. ^ a b c d Stern, Charles R. (2011). "Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle". Gondwana Research. 20: 284–308. doi:10.1016/j.gr.2011.03.006. {{cite journal}}: |access-date= requires |url= (help)
  2. ^ a b c Niemeyer, Hans; González, Gabriel; Martínez-De Los Ríos, Edmundo (1996). "Evolución tectónica cenozoica del margen continental activo de Antofagasta, norte de Chile". Revista geológica de Chile (in Spanish). 23 (2): 165–186.
  3. ^ Encinas, Alfonso; Finger, Kenneth L.; Buatois, Luis A.; Peterson, Dawn E. (2012). "Major forearc subsidence and deep-marine Miocene sedimentation in the present Coastal Cordillera and Longitudinal Depression of south-central Chile (38°30'S – 41°45'S)". Geological Society of America Bulletin. 124 (7–8): 1262–1277. doi:10.1130/b30567.1.
  4. ^ Encinas, Alfonso; Pérez, Felipe; Nielsen, Sven N.; Finger, Kenneth L.; Valencia, Victor; Duhart, Paul (2014). "Geochronologic and paleontologic evidence for a Pacific–Atlantic connection during the late Oligocene–early Miocene in the Patagonian Andes (43–44°S)". Journal of South American Earth Sciences. 55: 1–18. doi:10.1016/j.jsames.2014.06.008. {{cite journal}}: |access-date= requires |url= (help)
  5. ^ Charrier, Reynaldo; Pinto, Luisa; Rodríguez, María Pía (2006). "3. Tectonostratigraphic evolution of the Andean Orogen in Chile". In Moreno, Teresa; Gibbons, Wes (eds.). Geology of Chile. Geological Society of London. pp. 21, 45–46. ISBN 9781862392199.