Jump to content

Superformula

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by AnthonyGlaser (talk | contribs) at 23:47, 12 January 2016 (Tried to add animated gif but I don't think it worked.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Some superformula samples: a = b = 1; m, n1, n2 and n3 are shown in picture

The superformula is a generalization of the superellipse and was first proposed by Johan Gielis in 2003.[1] Gielis suggested that the formula can be used to describe many complex shapes and curves that are found in nature.

In polar coordinates, with the radius and the angle, the superformula is:

By choosing different values for the parameters , different shapes can be generated.

The formula was obtained by generalizing the superellipse, named and popularized by Piet Hein, a Danish mathematician.

Extension to higher dimensions

It is possible to extend the formula to 3, 4, or n dimensions, by means of the spherical product of superformulas. For example, the 3D parametric surface is obtained by multiplying two superformulas r1 and r2. The coordinates are defined by the relations:

where (latitude) varies between −π/2 and π/2 and θ (longitude) between −π and π.

Plots

A GNU Octave program for generating these figures:

  function sf2d(n,a)
    u=[0:.001:2*pi];
    raux=abs(1/a(1).*abs(cos(n(1)*u/4))).^n(3)+abs(1/a(2).*abs(sin(n(1)*u/4))).^n(4);
    r=abs(raux).^(-1/n(2));
    x=r.*cos(u);
    y=r.*sin(u);
    plot(x,y);
  end



3D superformula: a = b = 1; m, n1, n2 and n3 are shown in the pictures.

A GNU Octave program for generating these figures:

 function sf3d(n, a)
  u=[-pi:.05:pi];
  v=[-pi/2:.05:pi/2];
  nu=length(u);
  nv=length(v);
    for i=1:nu
    for j=1:nv
      raux1=abs(1/a(1)*abs(cos(n(1).*u(i)/4))).^n(3)+abs(1/a(2)*abs(sin(n(1)*u(i)/4))).^n(4);
      r1=abs(raux1).^(-1/n(2));
      raux2=abs(1/a(1)*abs(cos(n(1)*v(j)/4))).^n(3)+abs(1/a(2)*abs(sin(n(1)*v(j)/4))).^n(4);
      r2=abs(raux2).^(-1/n(2));
      x(i,j)=r1*cos(u(i))*r2*cos(v(j));
      y(i,j)=r1*sin(u(i))*r2*cos(v(j));
      z(i,j)=r2*sin(v(j));
    endfor;
  endfor;
  mesh(x,y,z);
 endfunction;

References

  1. ^ * Gielis, Johan (2003), "A generic geometric transformation that unifies a wide range of natural and abstract shapes", American Journal of Botany, 90 (3): 333–338, doi:10.3732/ajb.90.3.333, ISSN 0002-9122