Jump to content

Taylor state

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tom.Reding (talk | contribs) at 02:35, 30 April 2015 (WP:GenFixes, ref cleanup using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In plasma physics, a Taylor state is the minimum energy state of a plasma satisfying the constraint of conserving magnetic helicity.[1]

Derivation

Consider a closed, simply-connected, flux-conserving, perfectly conducting surface surrounding a plasma with negligible thermal energy ().

Since on . This implies that .

As discussed above, the plasma would relax towards a minimum energy state while conserving its magnetic helicity. Since the boundary is perfectly conducting, there cannot be any change in the associated flux. This implies and on .

We formulate a variational problem of minimizing the plasma energy while conserving magnetic helicity .

The variational problem is .

After some algebra this leads to the following constraint for the minimum energy state .

See also

References

  1. ^ Paul M. Bellan (2000). Spheromaks: A Practical Application of Magnetohydrodynamic dynamos and plasma self-organization. pp. 71–79. ISBN 1-86094-141-9.