Jump to content

Tetrakis(triphenylphosphine)palladium(0)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Lrohrstrom (talk | contribs) at 09:09, 19 January 2020. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tetrakis(triphenylphosphine)palladium(0)
3D model of the tetrakis(triphenylphosphine)palladium(0) molecule
Tetrakis(triphenylphosphine)palladium(0)
Names
IUPAC name
Tetrakis(triphenylphosphane)palladium(0)
Other names
TPP palladium(0)
Identifiers
3D model (JSmol)
ECHA InfoCard 100.034.609 Edit this at Wikidata
RTECS number
  • Unregistered
  • [Pd]([P](c1ccccc1)(c1ccccc1)c1ccccc1)([P](c1ccccc1)(c1ccccc1)c1ccccc1)([P](c1ccccc1)(c1ccccc1)c1ccccc1)[P](c1ccccc1)(c1ccccc1)c1ccccc1
Properties
C72H60P4Pd
Molar mass 1155.59 g·mol−1
Appearance Bright yellow to chartreuse crystals
Melting point decomposes around 115 °C
Insoluble
Structure
four triphenylphosphine monodentate
ligands attached to a central Pd(0)
atom in a tetrahedral geometry
tetrahedral
0 D
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability (yellow): no hazard codeSpecial hazards (white): no code
2
1
Related compounds
Related complexes
chlorotris(triphenylphosphine)rhodium(I)
tris(dibenzylideneacetone)dipalladium(0)
Related compounds
triphenylphosphine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Tetrakis(triphenylphosphine)palladium(0) (sometimes called quatrotriphenylphosphine) is the chemical compound [Pd(P(C6H5)3)4], often abbreviated Pd(PPh3)4, or rarely PdP4. It is a bright yellow crystalline solid that becomes brown upon decomposition in air.

Structure and properties

The four phosphorus atoms are at the corners of a tetrahedron surrounding the palladium(0) center. This structure is typical for four-coordinate 18 e complexes.[1] The corresponding complexes Ni(PPh3)4 and Pt(PPh3)4 are also well known. Such complexes reversibly dissociate PPh3 ligands in solution, so reactions attributed to Pd(PPh3)4 often in fact arise from Pd(PPh3)3 or even Pd(PPh3)2.

Preparation

Tetrakis(triphenylphosphine)palladium(0) was first prepared by Lamberto Malatesta et al. in the 1950s by reduction of sodium chloropalladate with hydrazine in the presence of the phosphine.[2] It is commercially available, but can be prepared in two steps from Pd(II) precursors:

PdCl2 + 2 PPh3 → PdCl2(PPh3)2
PdCl2(PPh3)2 + 2 PPh3 + 52 N2H4 → Pd(PPh3)4 + 12 N2 + 2 N2H5Cl

Both steps may be carried out in a one-pot reaction, without isolating and purifying the PdCl2(PPh3)2 intermediate.[3] Reductants other than hydrazine can be employed. The compound is sensitive to air, but can be purified by washing with methanol to give the desired yellow powder. It is usually stored cold under argon.

Applications

Pd(PPh3)4 is widely used as a catalyst for palladium-catalyzed coupling reactions.[4] Prominent applications include the Heck reaction, Suzuki coupling, Stille coupling, Sonogashira coupling, and Negishi coupling. These processes begin with two successive ligand dissociations followed by the oxidative addition of an aryl halide to the Pd(0) center:

Pd(PPh3)4 + ArBr → PdBr(Ar)(PPh3)2 + 2 PPh3

References

  1. ^ Elschenbroich, C.; Salzer, A. (1992). Organometallics: A Concise Introduction (2nd ed.). Weinheim: Wiley-VCH. ISBN 3-527-28165-7.
  2. ^ Malatesta, L.; Angoletta, M. (1957). "Palladium(0) compounds. Part II. Compounds with triarylphosphines, triaryl phosphites, and triarylarsines". J. Chem. Soc. 1957: 1186. doi:10.1039/JR9570001186.
  3. ^ Coulson, D. R.; Satek, L. C.; Grim, S. O. (1972). "Tetrakis(triphenylphosphine)palladium(0)". Inorg. Synth. Inorganic Syntheses. 13: 121. doi:10.1002/9780470132449.ch23. ISBN 978-0-470-13244-9.
  4. ^ Van Leeuwen, P. W. (2005). Homogeneous Catalysis: Understanding the Art. Springer. ISBN 1-4020-3176-9.