Jump to content

Uniform algebra

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Addbot (talk | contribs) at 16:09, 23 March 2013 (Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q7885096). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A uniform algebra A on a compact Hausdorff topological space X is a closed (with respect to the uniform norm) subalgebra of the C*-algebra C(X) (the continuous complex valued functions on X) with the following properties:

the constant functions are contained in A
for every x, y X there is fA with f(x)f(y). This is called separating the points of X.

As a closed subalgebra of the commutative Banach algebra C(X) a uniform algebra is itself a unital commutative Banach algebra (when equipped with the uniform norm). Hence, it is, (by definition) a Banach function algebra.

A uniform algebra A on X is said to be natural if the maximal ideals of A precisely are the ideals of functions vanishing at a point x in X.

Abstract characterization

If A is a unital commutative Banach algebra such that for all a in A, then there is a compact Hausdorff X such that A is isomorphic as a Banach algebra to a uniform algebra on X. This result follows from the spectral radius formula and the Gelfand representation.