Jump to content

User:Julio974fr/sandbox/4

From Wikipedia, the free encyclopedia
Name Notation Number invariants Symmetry Hyperbolic Torus
A-B DT Dowker–Thistlethwaite Conway Arf Cr. Br. CC. St. UK. Symmetry type Grp. G. Volume
01 0a1 0 0 1 0 3 0 0 (1, 1)
31 3a1 4 6 2 [3] 1 3 2 1 6 1 reversible Z2 1 (2, 3)
41 4a1 4 6 8 2 [22] 1 4 2 2 7 1 fully amphicheiral D4 1 2.02988
51 5a2 6 8 10 2 4 [5] 1 5 2 1 8 2 reversible Z2 2 (2, 5)
52 5a1 4 8 10 2 6 [32] 0 5 2 1 8 1 reversible D2 1 2.82812
61 6a3 4 8 12 10 2 6 [42] 0 6 2 1 8 1 reversible D2 0 3.16396
62 6a2 4 8 10 12 2 6 [312] 1 6 2 1 8 1 reversible D2 1 4.40083
63 6a1 4 8 10 2 12 6 [2112] 1 6 2 2 8 1 fully amphicheiral D4 1 5.69302
71 7a7 8 10 12 14 2 4 6 [7] 0 7 2 1 9 3 reversible Z2 3 (2, 7)
72 7a4 4 10 14 12 2 8 6 [52] 1 7 2 1 9 1 reversible D2 1 3.33174
73 7a5 6 10 12 14 2 4 8 [43] 1 7 2 1 9 2 reversible D2 2 4.59213
74 7a6 6 10 12 14 4 2 8 [313] 0 7 2 1 9 2 reversible D4 1 5.13794
75 7a3 4 10 12 14 2 8 6 [322] 0 7 2 2 9 2 reversible D2 2 6.44354
76 7a2 4 8 12 2 14 6 10 [2212] 1 7 2 1 9 1 reversible D2 1 7.08493
77 7a1 4 8 10 12 2 14 6 [21112] 1 7 2 2 9 1 reversible D4 1 7.64338
81 8a11 4 10 16 14 12 2 8 6 [62] 1 8 2 2 [9,10] 1 reversible D2 1 3.42721
82 8a8 4 10 12 14 16 2 6 8 [512] 0 8 2 2 [9,10] 2 reversible D2 2 4.93524
83 8a18 6 12 10 16 14 4 2 8 [44] 0 8 2 1 [9,10] 2 fully amphicheiral D4 1 5.23868
84 8a17 6 10 12 16 14 4 2 8 [413] 1 8 2 1 [9,10] 2 reversible D2 1 5.50049
85 8a13 6 8 12 2 14 16 4 10 [3;3;2] 1 8 3 1 [9,10] 2 reversible D2 2 6.99719
86 8a10 4 10 14 16 12 2 8 6 [332] 0 8 2 1 [9,10] 2 reversible D2 1 7.47524
87 8a6 4 10 12 14 2 16 6 8 [4112] 0 8 2 1 [9,10] 1 reversible D2 1 7.0222
88 8a4 4 8 12 2 16 14 6 10 [2312] 0 8 2 1 [9,10] 2 reversible D2 0 7.80134
89 8a16 6 10 12 14 16 4 2 8 [3113] 0 8 2 1 [9,10] 1 fully amphicheiral D4 0 7.58818
810 8a3 4 8 12 2 14 16 6 10 [3;21;2] 1 8 3 1 [9,10] 2 reversible D1 1 8.65115
811 8a9 4 10 12 14 16 2 8 6 [3212] 1 8 2 1 [9,10] 1 reversible D2 1 8.28632
812 8a5 4 8 14 10 2 16 6 12 [2222] 1 8 2 2 [9,10] 2 fully amphicheiral D4 1 8.93586
813 8a7 4 10 12 14 2 16 8 6 [31112] 1 8 2 2 [9,10] 1 reversible D2 1 8.53123
814 8a1 4 8 10 14 2 16 6 12 [22112] 0 8 2 1 [9,10] 1 reversible D2 1 9.2178
815 8a2 4 8 12 2 14 6 16 10 [21;21;2] 0 8 3 2 [9,10] 2 reversible D2 2 9.93065
816 8a15 6 8 14 12 4 16 2 10 [.2.20] 1 8 3 1 9 2 reversible D1 1 10.57902
817 8a14 6 8 12 14 4 16 2 10 [.2.2] 1 8 3 2 9 1 negative amphicheiral D1 1 10.98591
818 8a12 6 8 10 12 14 16 2 4 [8*] 1 8 3 3 9 2 fully amphicheiral D8 1 12.35091
819 8n3 4 8 -12 2 -14 -16 -6 -10 [3;3;2-] 1 8 3 1 8 3 reversible Z2 3 (3, 4)
820 8n1 4 8 -12 2 -14 -6 -16 -10 [3;21;2-] 0 8 3 1 8 1 reversible D1 0 4.1249
821 8n2 4 8 -12 2 14 -6 16 10 [21;21;2-] 0 8 3 2 9 1 reversible D2 1 6.78371
91 9a41 10 12 14 16 18 2 4 6 8 [9] 0 9 2 1 [9,10] 4 reversible Z2 4 (2, 9)
92 9a27 4 12 18 16 14 2 10 8 6 [72] 0 9 2 2 [9,10] 1 reversible D2 1 3.48666
93 9a38 8 12 14 16 18 2 4 6 10 [63] 1 9 2 1 [9,10] 3 reversible D2 3 4.99486
94 9a35 6 12 14 18 16 2 4 10 8 [54] 1 9 2 1 [9,10] 2 reversible D2 2 5.55652
95 9a36 6 12 14 18 16 4 2 10 8 [513] 0 9 2 1 [9,10] 2 reversible D2 1 5.69844
96 9a23 4 12 14 16 18 2 10 6 8 [522] 1 9 2 1 [9,11] 3 reversible D2 3 7.2036
97 9a26 4 12 16 18 14 2 10 8 6 [342] 1 9 2 1 [9,10] 2 reversible D2 2 8.01486
98 9a8 4 8 14 2 18 16 6 12 10 [2412] 0 9 2 1 [9,10] 2 reversible D2 1 8.19235
99 9a33 6 12 14 16 18 2 4 10 8 [423] 0 9 2 1 [9,10] 3 reversible D2 3 8.01682
910 9a39 8 12 14 16 18 2 6 4 10 [333] 0 9 2 2 [9,10] 3 reversible D4 2 8.77346
911 9a20 4 10 14 16 12 2 18 6 8 [4122] 0 9 2 2 [9,10] 2 reversible D2 2 8.28859
912 9a22 4 10 16 14 2 18 8 6 12 [4212] 1 9 2 2 [9,10] 1 reversible D2 1 8.83664
913 9a34 6 12 14 16 18 4 2 10 8 [3213] 1 9 2 1 [9,10] 3 reversible D2 2 9.13509
914 9a17 4 10 12 16 14 2 18 8 6 [41112] 1 9 2 2 [9,10] 1 reversible D2 1 8.95499
915 9a10 4 8 14 10 2 18 16 6 12 [2322] 0 9 2 1 [9,10] 2 reversible D2 1 9.8855
916 9a25 4 12 16 18 14 2 8 10 6 [3;3;2+] 0 9 3 2 [9,10] 3 reversible D2 3 9.88301
917 9a14 4 10 12 14 16 2 6 18 8 [21312] 0 9 2 1 [9,10] 2 reversible D4 1 9.47458
918 9a24 4 12 14 16 18 2 10 8 6 [3222] 0 9 2 2 [9,10] 2 reversible D2 2 10.05773
919 9a3 4 8 10 14 2 18 16 6 12 [23112] 0 9 2 1 [9,10] 1 reversible D2 1 10.03255
920 9a19 4 10 14 16 2 18 8 6 12 [31212] 0 9 2 2 [9,10] 2 reversible D2 2 9.6443
921 9a21 4 10 14 16 12 2 18 8 6 [31122] 1 9 2 1 [9,10] 1 reversible D2 1 10.18327
922 9a2 4 8 10 14 2 16 18 6 12 [211;3;2] 1 9 3 1 [9,10] 1 reversible D1 1 10.62073
923 9a16 4 10 12 16 2 8 18 6 14 [22122] 1 9 2 1 [9,11] 2 reversible D4 2 10.61135
924 9a7 4 8 14 2 16 18 6 12 10 [3;21;2+] 1 9 3 2 [9,10] 1 reversible D1 1 10.83373
925 9a4 4 8 12 2 16 6 18 10 14 [22;21;2] 0 9 3 1 [9,10] 2 reversible D1 1 11.39031
926 9a15 4 10 12 14 16 2 18 8 6 [311112] 0 9 2 1 [9,10] 1 reversible D2 1 10.59584
927 9a12 4 10 12 14 2 18 16 6 8 [212112] 0 9 2 1 [9,10] 1 reversible D2 0 10.99998
928 9a5 4 8 12 2 16 14 6 18 10 [21;21;2+] 1 9 3 1 [9,10] 1 reversible D2 1 11.56318
929 9a31 6 10 14 18 4 16 8 2 12 [.2.20.2] 1 9 3 1 9 2 reversible D1 1 12.20586
930 9a1 4 8 10 14 2 16 6 18 12 [211;21;2] 1 9 3 2 [9,10] 1 reversible D1 1 11.95453
931 9a13 4 10 12 14 2 18 16 8 6 [2111112] 0 9 2 1 [9,10] 2 reversible D4 1 11.68631
932 9a6 4 8 12 14 2 16 18 10 6 [.21.20] 1 9 3 1 [9,10] 2 chiral 1 1 13.0999
933 9a11 4 8 14 12 2 16 18 10 6 [.21.2] 1 9 3 2 [9,10] 1 chiral 1 1 13.28046
934 9a28 6 8 10 16 14 18 4 2 12 [8*20] 1 9 3 2 9 1 reversible D1 1 14.34458
935 9a40 8 12 16 14 18 4 2 6 10 [3;3;3] 1 9 3 1 9 3 reversible D6 1 7.94058
936 9a9 4 8 14 10 2 16 18 6 12 [22;3;2] 1 9 3 1 [9,11] 2 reversible D1 2 9.88458
937 9a18 4 10 14 12 16 2 6 18 8 [3;21;21] 1 9 3 2 [9,10] 2 reversible D2 1 10.98945
938 9a30 6 10 14 18 4 16 2 8 12 [.2.2.2] 0 9 3 2 [9,10] 3 reversible D1 2 12.93286
939 9a32 6 10 14 18 16 2 8 4 12 [2:2:20] 0 9 3 2 9 1 reversible D1 1 12.81031
940 9a37 6 16 14 12 4 2 18 10 8 [9*] 1 9 3 2 9 2 reversible D6 1 15.01834
941 9a29 6 10 14 12 16 2 18 4 8 [20:20:20] 0 9 3 1 9 2 reversible D3 0 12.09894
942 9n4 4 8 10 -14 2 -16 -18 -6 -12 [22;3;2-] 0 9 3 1 9 1 reversible D1 1 4.05686
943 9n3 4 8 10 14 2 -16 6 -18 -12 [211;3;2-] 1 9 3 1 9 2 reversible D1 2 5.90409
944 9n1 4 8 10 -14 2 -16 -6 -18 -12 [22;21;2-] 0 9 3 1 9 1 reversible D1 1 7.40677
945 9n2 4 8 10 -14 2 16 -6 18 12 [211;21;2-] 0 9 3 1 9 1 reversible D1 1 8.60203
946 9n5 4 10 -14 -12 -16 2 -6 -18 -8 [3;3;21-] 0 9 3 1 9 2 reversible D2 0 4.7517
947 9n7 6 8 10 16 14 -18 4 2 -12 [8*-20] 1 9 3 1 9 2 reversible D3 1 10.04996
948 9n6 4 10 -14 -12 16 2 -6 18 8 [21;21;21-] 1 9 3 1 9 2 reversible D6 1 9.53188
949 9n8 6 -10 -14 12 -16 -2 18 -4 -8 [-20:-20:-20] 0 9 3 2 9 3 reversible D3 2 9.42707
101 10a75 4 12 20 18 16 14 2 10 8 6 [82] 0 10 2 1 [9,11] 1 reversible D2 1 3.5262
102 10a59 4 12 14 16 18 20 2 6 8 10 [712] 0 10 2 2 [9,11] 3 reversible D2 3 5.11484
103 10a117 6 14 12 20 18 16 4 2 10 8 [64] 0 10 2 1 [9,11] 2 reversible D2 0 5.7321
104 10a113 6 12 14 20 18 16 4 2 10 8 [613] 1 10 2 1 [9,11] 2 reversible D2 1 5.81713
105 10a56 4 12 14 16 18 2 20 6 8 10 [6112] 0 10 2 2 [9,11] 2 reversible D2 2 7.37394
106 10a70 4 12 16 18 20 14 2 10 6 8 [532] 1 10 2 1 [9,11] 3 reversible D2 2 8.39094
107 10a65 4 12 14 18 16 20 2 10 8 6 [5212] 1 10 2 1 [9,11] 1 reversible D2 1 9.11591
108 10a114 6 14 12 16 18 20 4 2 8 10 [514] 1 10 2 1 [9,10] 2 reversible D2 2 6.08323
109 10a110 6 12 14 16 18 20 4 2 8 10 [5113] 0 10 2 2 [9,11] 1 reversible D2 1 8.2941
1010 10a64 4 12 14 18 16 2 20 10 8 6 [51112] 1 10 2 2 [9,11] 1 reversible D2 1 9.18057
1011 10a116 6 14 12 18 20 16 4 2 10 8 [433] 1 10 2 1 [9,11] [2,3] reversible D2 1 9.37044
1012 10a43 4 10 14 16 2 20 18 6 8 12 [4312] 0 10 2 1 [9,11] 2 reversible D2 1 9.8175
1013 10a54 4 10 18 16 12 2 20 8 6 14 [4222] 1 10 2 2 [9,11] 2 reversible D2 1 10.57848
1014 10a33 4 10 12 16 18 2 20 6 8 14 [42112] 0 10 2 2 [9,11] 2 reversible D2 2 10.93769
1015 10a68 4 12 16 18 14 2 10 20 6 8 [4132] 1 10 2 1 [9,11] 2 reversible D2 1 8.97345
1016 10a115 6 14 12 16 18 20 4 2 10 8 [4123] 0 10 2 1 [9,10] 2 reversible D2 1 9.54664
1017 10a107 6 12 14 16 18 2 4 20 8 10 [4114] 0 10 2 1 [9,10] 1 fully amphicheiral D4 1 8.53676
1018 10a63 4 12 14 18 16 2 10 20 8 6 [41122] 0 10 2 2 [9,10] 1 reversible D2 1 10.63984
1019 10a108 6 12 14 16 18 2 4 20 10 8 [41113] 1 10 2 2 [9,11] 2 reversible D2 1 9.84477
1020 10a74 4 12 18 20 16 14 2 10 8 6 [352] 1 10 2 1 [9,11] 2 reversible D2 1 8.31738
1021 10a60 4 12 14 16 18 20 2 6 10 8 [3412] 1 10 2 1 [9,11] 2 reversible D2 2 9.67514
1022 10a112 6 12 14 18 20 16 4 2 10 8 [3313] 0 10 2 1 [9,11] 2 reversible D2 0 9.98187
1023 10a57 4 12 14 16 18 2 20 6 10 8 [33112] 1 10 2 1 [9,11] 1 reversible D2 1 11.39322
1024 10a71 4 12 16 18 20 14 2 10 8 6 [3232] 0 10 2 1 [9,11] 2 reversible D2 1 10.97745
1025 10a61 4 12 14 16 18 20 2 10 8 6 [32212] 0 10 2 2 [9,11] 2 reversible D2 2 11.87578
1026 10a111 6 12 14 16 18 20 4 2 10 8 [32113] 1 10 2 2 [9,11] 1 reversible D2 1 11.35202
1027 10a58 4 12 14 16 18 2 20 10 8 6 [321112] 0 10 2 1 [9,11] 1 reversible D2 1 12.38413
1028 10a44 4 10 14 16 2 20 18 8 6 12 [31312] 1 10 2 2 [9,11] 2 reversible D2 1 10.26467
1029 10a53 4 10 16 18 12 2 20 8 6 14 [31222] 0 10 2 1 [9,11] 2 reversible D2 1 11.60291
1030 10a34 4 10 12 16 18 2 20 8 6 14 [312112] 1 10 2 1 [9,11] 1 reversible D2 1 11.82876
1031 10a69 4 12 16 18 14 2 10 20 8 6 [31132] 0 10 2 1 [9,11] 1 reversible D2 1 11.04426
1032 10a55 4 12 14 16 18 2 10 20 8 6 [311122] 1 10 2 2 [9,11] 1 reversible D2 1 12.09094
1033 10a109 6 12 14 16 18 4 2 20 10 8 [311113] 0 10 2 2 [9,11] 1 fully amphicheiral D4 1 11.53567
1034 10a19 4 8 14 2 20 18 16 6 12 10 [2512] 1 10 2 2 [9,11] 2 reversible D2 1 8.42227
1035 10a23 4 8 16 10 2 20 18 6 14 12 [2422] 0 10 2 1 [9,11] 2 reversible D2 0 10.3945
1036 10a5 4 8 10 16 2 20 18 6 14 12 [24112] 1 10 2 2 [9,11] 2 reversible D2 1 10.47619
1037 10a49 4 10 16 12 2 8 20 18 6 14 [2332] 1 10 2 2 [9,12] 2 fully amphicheiral D4 1 10.96581
1038 10a29 4 10 12 16 2 8 20 18 6 14 [23122] 1 10 2 1 [9,11] 2 reversible D2 1 11.34931
1039 10a26 4 10 12 14 18 2 6 20 8 16 [22312] 1 10 2 1 [9,11] 2 reversible D2 2 11.58952
1040 10a30 4 10 12 16 2 20 6 18 8 14 [222112] 1 10 2 1 [9,11] 2 reversible D2 1 12.88874
1041 10a35 4 10 12 16 20 2 8 18 6 14 [221212] 0 10 2 1 [9,11] 2 reversible D2 1 12.37662
1042 10a31 4 10 12 16 2 20 8 18 6 14 [2211112] 0 10 2 1 [9,11] 1 reversible D2 0 13.23985
1043 10a52 4 10 16 14 2 20 8 18 6 12 [212212] 0 10 2 1 [9,11] 2 fully amphicheiral D4 1 12.6026
1044 10a32 4 10 12 16 14 2 20 18 8 6 [2121112] 0 10 2 1 [9,11] 1 reversible D2 1 12.96899
1045 10a25 4 10 12 14 16 2 20 18 8 6 [21111112] 0 10 2 1 [9,11] 2 fully amphicheiral D4 1 13.71608
1046 10a81 6 8 14 2 16 18 20 4 10 12 [5;3;2] 0 10 3 2 [9,11] 3 reversible D1 3 7.717
1047 10a15 4 8 14 2 16 18 20 6 10 12 [5;21;2] 0 10 3 2 [9,11] [2,3] reversible D1 2 9.38519
1048 10a79 6 8 14 2 16 18 4 20 10 12 [41;3;2] 0 10 3 1 [9,10] 2 reversible D1 0 10.3789
1049 10a13 4 8 14 2 16 18 6 20 10 12 [41;21;2] 1 10 3 1 [9,11] 3 reversible D1 3 11.45319
1050 10a82 6 8 14 2 16 18 20 4 12 10 [32;3;2] 1 10 3 1 [9,11] 2 reversible D1 2 11.19889
1051 10a16 4 8 14 2 16 18 20 6 12 10 [32;21;2] 1 10 3 1 [9,11] [2,3] reversible D1 1 12.63138
1052 10a80 6 8 14 2 16 18 4 20 12 10 [311;3;2] 1 10 3 1 [9,11] 2 reversible D1 1 11.53755
1053 10a14 4 8 14 2 16 18 6 20 12 10 [311;21;2] 0 10 3 2 [9,11] 3 reversible D1 2 12.88685
1054 10a48 4 10 16 12 2 8 18 20 6 14 [23;3;2] 0 10 3 1 [9,11] [2,3] reversible D1 1 10.59131
1055 10a9 4 8 12 2 16 6 20 18 10 14 [23;21;2] 1 10 3 1 [9,11] 2 reversible D1 2 12.18554
1056 10a28 4 10 12 16 2 8 18 20 6 14 [221;3;2] 0 10 3 2 [9,10] 2 reversible D1 2 12.3988
1057 10a6 4 8 12 2 14 18 6 20 10 16 [221;21;2] 0 10 3 1 [9,11] 2 reversible D1 1 13.58856
1058 10a20 4 8 14 10 2 18 6 20 12 16 [22;22;2] 0 10 3 2 [9,11] 2 reversible D2 1 12.72133
1059 10a2 4 8 10 14 2 18 6 20 12 16 [22;211;2] 1 10 3 1 [9,11] 1 reversible D1 1 13.38994
1060 10a1 4 8 10 14 2 16 18 6 20 12 [211;211;2] 1 10 3 2 [9,11] 1 reversible D2 1 13.98004
1061 10a123 8 10 16 14 2 18 20 6 4 12 [4;3;3] 0 10 3 2 [9,11] [2,3] reversible D2 2 8.45858
1062 10a41 4 10 14 16 2 18 20 6 8 12 [4;3;21] 1 10 3 1 [9,11] 2 reversible D1 2 10.14147
1063 10a51 4 10 16 14 2 18 8 6 20 12 [4;21;21] 0 10 3 2 [9,11] 2 reversible D2 2 11.51169
1064 10a122 8 10 14 16 2 18 20 6 4 12 [31;3;3] 1 10 3 1 [9,11] 2 reversible D2 1 10.86809
1065 10a42 4 10 14 16 2 18 20 8 6 12 [31;3;21] 0 10 3 1 [9,11] 2 reversible D1 1 12.07646
1066 10a40 4 10 14 16 2 18 8 6 20 12 [31;21;21] 1 10 3 1 [9,11] 3 reversible D2 3 13.02927
1067 10a37 4 10 14 12 18 2 6 20 8 16 [22;3;21] 0 10 3 1 [9,11] 2 chiral Z2 1 12.42163
1068 10a67 4 12 16 14 18 2 20 6 10 8 [211;3;3] 0 10 3 1 [9,10] 2 reversible D2 1 11.63704
1069 10a38 4 10 14 12 18 2 16 6 20 8 [211;21;21] 0 10 3 1 [9,11] 2 reversible D2 1 14.12651
1070 10a22 4 8 16 10 2 18 20 6 14 12 [22;3;2+] 1 10 3 1 [9,11] 2 reversible D1 1 12.51089
1071 10a10 4 8 12 2 18 14 6 20 10 16 [22;21;2+] 1 10 3 2 [9,11] 1 reversible D1 1 13.38523
1072 10a4 4 8 10 16 2 18 20 6 14 12 [211;3;2+] 0 10 3 2 [9,11] 2 reversible D1 2 12.92959
1073 10a3 4 8 10 14 2 18 16 6 20 12 [211;21;2+] 1 10 3 1 [9,11] 1 reversible D1 1 13.70688
1074 10a62 4 12 14 16 20 18 2 8 6 10 [3;3;21+] 0 10 3 1 [9,11] 2 reversible D2 1 12.00604
1075 10a27 4 10 12 14 18 2 16 6 20 8 [21;21;21+] 0 10 3 1 [9,11] 2 reversible D6 0 13.43075
1076 10a73 4 12 18 20 14 16 2 10 8 6 [3;3;2++] 0 10 3 2 [9,12] [2,3] reversible D2 2 11.51286
1077 10a18 4 8 14 2 18 20 16 6 12 10 [3;21;2++] 0 10 3 1 [9,11] [2,3] reversible D1 1 12.07471
1078 10a17 4 8 14 2 18 16 6 12 20 10 [21;21;2++] 1 10 3 1 [9,11] 2 reversible D2 2 12.5021
1079 10a78 6 8 12 2 16 4 18 20 10 14 [(3;2)(3;2)] 1 10 3 2 [9,11] [2,3] negative amphicheiral D1 1 12.5403
1080 10a8 4 8 12 2 16 6 18 20 10 14 [(3;2)(21;2)] 0 10 3 1 [9,11] 3 chiral 1 3 13.39404
1081 10a7 4 8 12 2 16 6 18 10 20 14 [(21;2)(21;2)] 1 10 3 2 [9,11] 2 negative amphicheiral D1 1 14.49267
1082 10a83 6 8 14 16 4 18 20 2 10 12 [.4.2] 0 10 3 1 [9,10] 1 chiral 1 1 12.43148
1083 10a87 6 8 16 14 4 18 20 2 12 10 [.31.20] 1 10 3 1 [9,10] 2 chiral 1 1 14.25805
1084 10a50 4 10 16 14 2 8 18 20 12 6 [.22.2] 0 10 3 2 [9,10] 1 chiral 1 1 14.7099
1085 10a86 6 8 16 14 4 18 20 2 10 12 [.4.20] 0 10 3 2 [9,10] 2 chiral 1 2 11.79777
1086 10a84 6 8 14 16 4 18 20 2 12 10 [.31.2] 1 10 3 2 [9,11] 2 chiral 1 1 14.34126
1087 10a39 4 10 14 16 2 8 18 20 12 6 [.22.20] 0 10 3 1 [9,11] 2 chiral 1 0 14.27364
1088 10a11 4 8 12 14 2 16 20 18 10 6 [.21.21] 1 10 3 2 [9,11] 1 negative amphicheiral D1 1 15.64665
1089 10a21 4 8 14 12 2 16 20 18 10 6 [.21.210] 1 10 3 1 [9,11] 2 reversible D1 1 15.56606
1090 10a92 6 10 14 2 16 20 18 8 4 12 [.3.2.2] 1 10 3 2 [9,10] 2 chiral 1 1 13.86615
1091 10a106 6 10 20 14 16 18 4 8 2 12 [.3.2.20] 0 10 3 1 [9,10] 1 chiral 1 1 13.48702
1092 10a46 4 10 14 18 2 16 8 20 12 6 [.21.2.20] 0 10 3 2 [9,11] 2 chiral 1 2 14.85535
1093 10a101 6 10 16 20 14 4 18 2 12 8 [.3.20.2] 1 10 3 1 [9,10] 2 chiral 1 1 13.01647
1094 10a91 6 10 14 2 16 18 20 8 4 12 [.30.2.2] 0 10 3 1 [9,10] 2 chiral 1 1 13.31157
1095 10a47 4 10 14 18 2 16 20 8 12 6 [.210.2.2] 1 10 3 2 [9,11] 1 chiral 1 1 15.04785
1096 10a24 4 8 18 12 2 16 20 6 10 14 [.2.21.2] 1 10 3 2 [9,11] 2 reversible D1 1 15.17785
1097 10a12 4 8 12 18 2 16 20 6 10 14 [.2.210.2] 0 10 3 1 [9,11] 2 reversible D1 1 14.85275
1098 10a96 6 10 14 18 2 16 20 4 8 12 [.2.2.2.20] 0 10 3 2 [9,11] 2 chiral Z2 2 14.41292
1099 10a103 6 10 18 14 2 16 20 8 4 12 [.2.2.20.20] 0 10 3 1 [9,11] 2 fully amphicheiral D2 0 14.33434
10100 10a104 6 10 18 14 16 4 20 8 2 12 [3:2:2] 0 10 3 2 [9,10] [2,3] reversible D1 2 12.81088
10101 10a45 4 10 14 18 2 16 6 20 8 12 [21:2:2] 1 10 3 1 [9,11] 3 reversible D1 2 14.68751
10102 10a97 6 10 14 18 16 4 20 2 8 12 [3:2:20] 0 10 3 1 [9,10] 1 chiral 1 1 13.72734
10103 10a105 6 10 18 16 14 4 20 8 2 12 [30:2:2] 1 10 3 1 [9,10] 3 reversible D1 1 13.87479
10104 10a118 6 16 12 14 18 4 20 2 8 10 [3:20:20] 1 10 3 2 [9,10] 1 reversible D1 1 14.10713
10105 10a72 4 12 16 20 18 2 8 6 10 14 [21:20:20] 1 10 3 1 [9,10] 2 reversible D1 1 15.1817
10106 10a95 6 10 14 16 18 4 20 2 8 12 [30:2:20] 1 10 3 1 [9,10] 2 chiral 1 1 13.93302
10107 10a66 4 12 16 14 18 2 8 20 10 6 [210:2:20] 1 10 3 2 [9,10] 1 chiral 1 1 15.35285
10108 10a119 6 16 12 14 18 4 20 2 10 8 [30:20:20] 0 10 3 1 [9,10] 2 reversible D1 1 12.90462
10109 10a93 6 10 14 16 2 18 4 20 8 12 [2.2.2.2] 1 10 3 2 [9,10] 2 negative amphicheiral D1 1 14.90021
10110 10a100 6 10 16 20 14 2 18 4 8 12 [2.2.2.20] 1 10 3 1 [9,10] 2 chiral 1 1 14.77746
10111 10a98 6 10 16 14 2 18 8 20 4 12 [2.2.20.2] 1 10 3 1 [9,10] 2 reversible D1 2 14.26502
10112 10a76 6 8 10 14 16 18 20 2 4 12 [8*3] 0 10 3 2 [9,10] 2 reversible D1 1 14.75588
10113 10a36 4 10 14 12 2 16 18 20 8 6 [8*21] 0 10 3 2 [9,10] 1 reversible D1 1 16.47347
10114 10a77 6 8 10 14 16 20 18 2 4 12 [8*30] 1 10 3 2 [9,10] 1 reversible D1 1 15.3049
10115 10a94 6 10 14 16 4 18 2 20 12 8 [8*20.20] 1 10 3 2 [9,10] 2 negative amphicheiral D1 1 16.63804
10116 10a120 6 16 18 14 2 4 20 8 10 12 [8*2:2] 0 10 3 1 [9,10] 2 reversible D1 1 15.42387
10117 10a99 6 10 16 14 18 4 20 2 12 8 [8*2:20] 0 10 3 1 [9,10] 2 chiral 1 1 16.12544
10118 10a88 6 8 18 14 16 4 20 2 10 12 [8*2:.2] 0 10 3 1 [9,10] 1 negative amphicheiral D1 1 15.54521
10119 10a85 6 8 14 18 16 4 20 10 2 12 [8*2:.20] 1 10 3 2 [9,10] 1 chiral 1 1 15.93869
10120 10a102 6 10 18 12 4 16 20 8 2 14 [8*20::20] 0 10 3 2 [9,10] 3 reversible D2 2 16.27137
10121 10a90 6 10 12 20 18 16 8 2 4 14 [9*20] 1 10 3 1 [9,10] 2 reversible D1 1 16.97488
10122 10a89 6 10 12 14 18 16 20 2 4 8 [9*.20] 0 10 3 1 [9,10] 2 reversible D2 1 16.41082
10123 10a121 8 10 12 14 16 18 20 2 4 6 [10*] 0 10 3 1 [9,11] 2 fully amphicheiral D10 0 17.08571
10124 10n21 4 8 -14 2 -16 -18 -20 -6 -10 -12 [5;3;2-] 0 10 3 1 10 4 reversible Z2 4 (3, 5)
10125 10n15 4 8 14 2 -16 -18 6 -20 -10 -12 [5;21;2-] 1 10 3 1 [9,10] 2 reversible D1 1 4.61196
10126 10n17 4 8 -14 2 -16 -18 -6 -20 -10 -12 [41;3;2-] 1 10 3 1 [9,10] 2 reversible D1 1 6.90426
10127 10n16 4 8 -14 2 16 18 -6 20 10 12 [41;21;2-] 1 10 3 1 [9,10] 2 reversible D1 2 8.89682
10128 10n22 4 8 -14 2 -16 -18 -20 -6 -12 -10 [32;3;2-] 1 10 3 1 [9,10] 3 reversible D1 3 5.86054
10129 10n18 4 8 14 2 -16 -18 6 -20 -12 -10 [32;21;2-] 0 10 3 1 [9,10] 1 reversible D1 0 8.90152
10130 10n20 4 8 -14 2 -16 -18 -6 -20 -12 -10 [311;3;2-] 0 10 3 1 [9,10] 2 reversible D1 1 6.7782
10131 10n19 4 8 -14 2 16 18 -6 20 12 10 [311;21;2-] 0 10 3 1 [9,10] 1 reversible D1 1 9.46502
10132 10n13 4 8 -12 2 -16 -6 -20 -18 -10 -14 [23;3;2-] 1 10 3 2 [9,10] 1 reversible D1 1 4.05686
10133 10n4 4 8 12 2 -14 -18 6 -20 -10 -16 [23;21;2-] 1 10 3 1 [9,10] 1 reversible D1 1 7.7983
10134 10n6 4 8 -12 2 -14 -18 -6 -20 -10 -16 [221;3;2-] 0 10 3 1 [9,10] 3 reversible D1 3 8.39292
10135 10n5 4 8 -12 2 14 18 -6 20 10 16 [221;21;2-] 1 10 3 2 [9,10] 2 reversible D1 1 10.68717
10136 10n3 4 8 10 -14 2 -18 -6 -20 -12 -16 [22;22;2-] 0 10 3 2 [9,10] 1 reversible D2 1 7.74627
10137 10n2 4 8 10 -14 2 -16 -18 -6 -20 -12 [22;211;2-] 0 10 3 1 [9,10] 1 reversible D1 0 9.25056
10138 10n1 4 8 10 -14 2 16 18 -6 20 12 [211;211;2-] 1 10 3 2 [9,10] 2 reversible D2 1 10.46725
10139 10n27 4 10 -14 -16 2 -18 -20 -6 -8 -12 [4;3;3-] 1 10 3 1 [9,10] 4 reversible D2 4 4.85117
10140 10n29 4 10 -14 -16 2 18 20 -8 -6 12 [4;3;21-] 0 10 3 1 [9,10] 2 reversible D1 0 5.21257
10141 10n25 4 10 -14 -16 2 18 -8 -6 20 12 [4;21;21-] 1 10 3 2 [9,10] 1 reversible D2 1 7.93647
10142 10n30 4 10 -14 -16 2 -18 -20 -8 -6 -12 [31;3;3-] 0 10 3 1 [9,10] 3 reversible D2 3 6.77082
10143 10n26 4 10 -14 -16 2 -18 -8 -6 -20 -12 [31;3;21-] 1 10 3 1 [9,10] 1 reversible D1 1 9.0709
10144 10n28 4 10 14 16 2 -18 -20 8 6 -12 [31;21;21-] 0 10 3 1 [9,10] 2 reversible D2 1 10.79659
10145 10n14 4 8 -12 -18 2 -16 -20 -6 -10 -14 [22;3;3-] 1 10 3 1 [9,10] 2 reversible D2 2 5.0449
10146 10n23 4 8 -18 -12 2 -16 -20 -6 -10 -14 [22;21;21-] 0 10 3 1 [9,10] 1 reversible D2 1 10.56102
10147 10n24 4 10 -14 12 2 16 18 -20 8 -6 [211;3;21-] 1 10 3 1 [9,10] 1 chiral Z2 1 9.41759
10148 10n12 4 8 -12 2 -16 -6 -18 -20 -10 -14 [(3;2)(3;2-)] 0 10 3 1 [9,10] 2 chiral 1 1 10.26024
10149 10n11 4 8 -12 2 16 -6 18 20 10 14 [(3;2)(21;2-)] 0 10 3 2 [9,10] 2 chiral 1 2 11.44273
10150 10n9 4 8 -12 2 -16 -6 -18 -10 -20 -14 [(21;2)(3;2-)] 1 10 3 1 [9,10] 2 chiral 1 2 10.08136
10151 10n8 4 8 -12 2 16 -6 18 10 20 14 [(21;2)(21;2-)] 1 10 3 1 [9,10] 2 chiral 1 1 11.84304
10152 10n36 6 8 12 2 -16 4 -18 -20 -10 -14 [(3;2)-(3;2)] 1 10 3 1 [9,10] 4 reversible D1 4 8.53607
10153 10n10 4 8 12 2 -16 6 -18 -20 -10 -14 [(3;2)-(21;2)] 0 10 3 1 [9,10] 2 chiral 1 0 7.37434
10154 10n7 4 8 12 2 -16 6 -18 -10 -20 -14 [(21;2)-(21;2)] 1 10 3 1 [9,11] 3 reversible D1 3 9.24989
10155 10n39 6 10 14 16 18 4 -20 2 8 -12 [-3:2:2] 0 10 3 1 [9,10] 2 reversible D2 0 9.25054
10156 10n32 4 12 16 -14 18 2 -8 20 10 6 [-3:2:20] 1 10 3 2 [9,10] 1 reversible D1 1 11.16339
10157 10n42 6 -10 -18 14 -2 -16 20 8 -4 12 [-3:20:20] 0 10 3 2 [9,10] 2 reversible D4 2 12.66533
10158 10n41 6 -10 -16 14 -2 -18 8 20 -4 -12 [-30:2:2] 1 10 3 2 [9,10] 2 reversible D1 1 12.27124
10159 10n34 6 8 10 14 16 -18 -20 2 4 -12 [-30:2:20] 0 10 3 2 [9,10] 1 reversible D1 1 11.74064
10160 10n33 4 12 -16 -14 -18 2 -8 -20 -10 -6 [-30:20:20] 1 10 3 1 [9,10] 2 reversible D1 2 9.20392
10161 10n31 4 12 -16 14 -18 2 8 -20 -10 -6 [3:-20:-20] 1 10 3 1 [9,10] 3 reversible D1 3 5.63877
10162 10n40 6 10 14 18 16 4 -20 2 8 -12 [-30:-20:-20] 1 10 3 2 [9,10] 2 reversible D1 1 10.69336
10163 10n35 6 8 10 14 16 -20 -18 2 4 -12 [8*-30] 1 10 3 2 [9,10] 2 reversible D1 1 13.29
10164 10n38 6 -10 -12 14 -18 -16 20 -2 -4 -8 [8*2:-20] 1 10 3 2 [9,10] 1 reversible D1 1 12.50669
10165 10n37 6 8 14 18 16 4 -20 10 2 -12 [8*2:.-20] 0 10 3 1 [9,10] 2 reversible D1 1 11.60308
A-B DT Alexander Conway Jones HOMFLY-PT
01 0a1 1 1 1
31 3a1 1−t+t2 1+z2 t+t3−t4 (2v2−v4)+(v2)*z2
41 4a1 1−3t+t2 1−z2 t−2−t−1+1−t+t2 (v−2−1+v2)+(−1)*z2
51 5a2 1−t+t2−t3+t4 1+3z2+z4 t2+t4−t5+t6−t7 (3v4−2v6)+(4v4−v6)*z2+(v4)*z4
52 5a1 2−3t+2t2 1+2z2 t−t2+2t3−t4+t5−t6 (v2+v4−v6)+(v2+v4)*z2
61 6a3 2−5t+2t2 1−2z2 t−2−t−1+2−2t+t2−t3+t4 (v−2−v2+v4)+(−1−v2)*z2
62 6a2 1−3t+3t2−3t3+t4 1−z2−z4 t−1−1+2t−2t2+2t3−2t4+t5 (2−2v2+v4)+(1−3v2+v4)*z2+(−v2)*z4
63 6a1 1−3t+5t2−3t3+t4 1+z2+z4 −t−3+2t−2−2t−1+3−2t+2t2−t3 (−v−2+3−v2)+(−v−2+3−v2)*z2+(1)*z4
71 7a7 1−t+t2−t3+t4−t5+t6 1+6z2+5z4+z6 t3+t5−t6+t7−t8+t9−t10 (4v6−3v8)+(10*v6−4v8)*z2+(6v6−v8)*z4+(v6)*z6
72 7a4 3−5t+3t2 1+3z2 t−t2+2t3−2t4+2t5−t6+t7−t8 (v2+v6−v8)+(v2+v4+v6)*z2
73 7a5 2−3t+3t2−3t3+2t4 1+5z2+2z4 t2−t3+2t4−2t5+3t6−2t7+t8−t9 (v4+2v6−2v8)+(3v4+3v6−v8)*z2+(v4+v6)*z4
74 7a6 4−7t+4t2 1+4z2 t−2t2+3t3−2t4+3t5−2t6+t7−t8 (2v4−v8)+(v2+2v4+v6)*z2
75 7a3 2−4t+5t2−4t3+2t4 1+4z2+2z4 t2−t3+3t4−3t5+3t6−3t7+2t8−t9 (2v4−v8)+(3v4+2v6−v8)*z2+(v4+v6)*z4
76 7a2 1−5t+7t2−5t3+t4 1+z2−z4 t−1−2+3t−3t2+4t3−3t4+2t5−t6 (1−v2+2v4−v6)+(1−2v2+2v4)*z2+(−v2)*z4
77 7a1 1−5t+9t2−5t3+t4 1−z2+z4 t−4−2t−3+3t−2−4t−1+4−3t+3t2−t3 (v−4−2v−2+2)+(−2v−2+2−v2)*z2+(1)*z4
81 8a11 3−7t+3t2 1−3z2 t−2−t−1+2−2t+2t2−2t3+t4−t5+t6 (v−2−v4+v6)+(−1−v2−v4)*z2
82 8a8 1−3t+3t2−3t3+3t4−3t5+t6 1−3z4−z6 1−t+2t2−2t3+3t4−3t5+2t6−2t7+t8 (3v2−3v4+v6)+(4v2−7v4+3v6)*z2+(v2−5v4+v6)*z4+(−v4)*z6
83 8a18 4−9t+4t2 1−4z2 t−4−t−3+2t−2−3t−1+3−3t+2t2−t3+t4 (v−4−1+v4)+(−v−2−2−v2)*z2
84 8a17 2−5t+5t2−5t3+2t4 1−3z2−2z4 t−5−2t−4+3t−3−3t−2+3t−1−3+2t1−t2+t3 (v−4−2+2v2)+(v−4−2v−2−3+v2)*z2+(−v−2−1)*z4
85 8a13 1−3t+4t2−5t3+4t4−3t5+t6 1−z2−3z4−z6 1−t+3t2−3t3+3t4−4t5+3t6−2t7+t8 (4v2−5v4+2v6)+(4v2−8v4+3v6)*z2+(v2−5v4+v6)*z4+(−v4)*z6
86 8a10 2−6t+7t2−6t3+2t4 1−2z2−2z4 t−1−1+3t−4t2+4t3−4t4+3t5−2t6+t7 (2−v2−v4+v6)+(1−2v2−2v4+v6)*z2+(−v2−v4)*z4
87 8a6 1−3t+5t2−5t3+5t4−3t5+t6 1+2z2+3z4+z6 −t−6+2t−5−3t−4+4t−3−4t−2+4t−1−2+2t−t2 (−2v−4+4v−2−1)+(−3v−4+8v−2−3)*z2+(−v−4+5v−2−1)*z4+(v−2)*z6
88 8a4 2−6t+9t2−6t3+2t4 1+2z2+2z4 −t−5+2t−4−3t−3+4t−2−4t−1+5−3t+2t2−t3 (−v−4+v−2+2−v2)+(−v−4+2v−2+2−v2)*z2+(v−2+1)*z4
89 8a16 1−3t+5t2−7t3+5t4−3t5+t6 1−2z2−3z4−z6 t−4−2t−3+3t−2−4t−1+5−4t+3t2−2t3+t4 (2v−2−3+2v2)+(3v−2−8+3v2)*z2+(v−2−5+v2)*z4+(−1)*z6
810 8a3 1−3t+6t2−7t3+6t4−3t5+t6 1+3z2+3z4+z6 −t−6+2t−5−4t−4+5t−3−4t−2+5t−1−3+2t−t2 (−3v−4+6v−2−2)+(−3v−4+9v−2−3)*z2+(−v−4+5v−2−1)*z4+(v−2)*z6
811 8a9 2−7t+9t2−7t3+2t4 1−z2−2z4 t−1−2+4t−4t2+5t3−5t4+3t5−2t6+t7 (1+v2−2v4+v6)+(1−v2−2v4+v6)*z2+(−v2−v4)*z4
812 8a5 1−7t+13t2−7t3+t4 1−3z2+z4 t−4−2t−3+4t−2−5t−1+5−5t+4t2−2t3+t4 (v−4−v−2+1−v2+v4)+(−2v−2+1−2v2)*z2+(1)*z4
813 8a7 2−7t+11t2−7t3+2t4 1+z2+2z4 −t−5+2t−4−3t−3+5t−2−5t−1+5−4t+3t2−t3 (−v−4+2v−2)+(−v−4+2v−2+1−v2)*z2+(v−2+1)*z4
814 8a1 2−8t+11t2−8t3+2t4 1−2z4 t−1−2+4t−5t2+6t3−5t4+4t5−3t6+t7 (1)+(1−v2−v4+v6)*z2+(−v2−v4)*z4
815 8a2 3−8t+11t2−8t3+3t4 1+4z2+3z4 t2−2t3+5t4−5t5+6t6−6t7+4t8−3t9+t10 (v4+3v6−4v8+v10)+(2v4+5v6−3v8)*z2+(v4+2v6)*z4
816 8a15 1−4t+8t2−9t3+8t4−4t5+t6 1+z2+2z4+z6 −t−6+3t−5−5t−4+6t−3−6t−2+6t−1−4+3t−t2 (−v−4+2v−2)+(−2v−4+5v−2−2)*z2+(−v−4+4v−2−1)*z4+(v−2)*z6
817 8a14 1−4t+8t2−11t3+8t4−4t5+t6 1−z2−2z4−z6 t−4−3t−3+5t−2−6t−1+7−6t+5t2−3t3+t4 (v−2−1+v2)+(2v−2−5+2v2)*z2+(v−2−4+v2)*z4+(−1)*z6
818 8a12 1−5t+10*t2−13t3+10*t4−5t5+t6 1+z2−z4−z6 t−4−4t−3+6t−2−7t−1+9−7t+6t2−4t3+t4 (−v−2+3−v2)+(v−2−1+v2)*z2+(v−2−3+v2)*z4+(−1)*z6
819 8n3 1−t+t3−t5+t6 1+5z2+5z4+z6 t3+t5−t8 (5v6−5v8+v10)+(10*v6−5v8)*z2+(6v6−v8)*z4+(v6)*z6
820 8n1 1−2t+3t2−2t3+t4 1+2z2+z4 −t−5+t−4−t−3+2t−2−t−1+2−t (−2v−4+4v−2−1)+(−v−4+4v−2−1)*z2+(v−2)*z4
821 8n2 1−4t+5t2−4t3+t4 1−z4 2t−2t2+3t3−3t4+2t5−2t6+t7 (3v2−3v4+v6)+(2v2−3v4+v6)*z2+(−v4)*z4
91 9a41 1−t+t2−t3+t4−t5+t6−t7+t8 1+10*z2+15z4+7z6+z8 t4+t6−t7+t8−t9+t10−t11+t12−t13 (5v8−4v10)+(20*v8−10*v10)*z2+(21v8−6v10)*z4+(8v8−v10)*z6+(v8)*z8
92 9a27 4−7t+4t2 1+4z2 t−t2+2t3−2t4+2t5−2t6+2t7−t8+t9−t10 (v2+v8−v10)+(v2+v4+v6+v8)*z2
93 9a38 2−3t+3t2−3t3+3t4−3t5+2t6 1+9z2+9z4+2z6 t3−t4+2t5−2t6+3t7−3t8+3t9−2t10+t11−t12 (v6+3v8−3v10)+(6v6+7v8−4v10)*z2+(5v6+5v8−v10)*z4+(v6+v8)*z6
94 9a35 3−5t+5t2−5t3+3t4 1+7z2+3z4 t2−t3+2t4−3t5+4t6−3t7+3t8−2t9+t10−t11 (−2v10+2v8+v4)−(v10−3v8−2v6−3v4)*z2+(v8+v6+v4)*z4
95 9a36 6−11t+6t2 1+6z2 t−2t2+3t3−3t4+4t5−3t6+3t7−2t8+t9−t10 (v4+v6−v10)+(v2+2v4+2v6+v8)*z2
96 9a23 2−4t+5t2−5t3+5t4−4t5+2t6 1+7z2+8z4+2z6 t3−t4+3t5−3t6+4t7−5t8+4t9−3t10+2t11−t12 (3v6−v8−v10)+(7v6+3v8−3v10)*z2+(5v6+4v8−v10)*z4+(v6+v8)*z6
97 9a26 3−7t+9t2−7t3+3t4 1+5z2+3z4 t2−t3+3t4−4t5+5t6−5t7+4t8−3t9+2t10−t11 (2v4−v6+v8−v10)+(3v4+v6+2v8−v10)*z2+(v4+v6+v8)*z4
98 9a8 2−8t+11t2−8t3+2t4 1−2z4 t−3−2t−2+3t−1−4+5t−5t2+5t3−3t4+2t5−t6 (v−2−1+2v4−v6)+(v−2−2−v2+2v4)*z2+(−1−v2)*z4
99 9a33 2−4t+6t2−7t3+6t4−4t5+2t6 1+8z2+8z4+2z6 t3−t4+3t5−4t6+5t7−5t8+5t9−4t10+2t11−t12 (2v6+v8−2v10)+(7v6+4v8−3v10)*z2+(5v6+4v8−v10)*z4+(v6+v8)*z6
910 9a39 4−8t+9t2−8t3+4t4 1+8z2+4z4 t2−2t3+4t4−5t5+6t6−5t7+5t8−3t9+t10−t11 (2v6+v8−2v10)+(2v4+5v6+2v8−v10)*z2+(v4+2v6+v8)*z4
911 9a20 1−5t+7t2−7t3+7t4−5t5+t6 1+4z2−z4−z6 −t−9+2t−8−4t−7+5t−6−5t−5+6t−4−4t−3+3t−2−2t−1+1 (−2v−8+3v−6−v−4+v−2)+(−v−8+6v−6−4v−4+3v−2)*z2+(2v−6−4v−4+v−2)*z4+(−v−4)*z6
912 9a22 2−9t+13t2−9t3+2t4 1+z2−2z4 t−1−2+4t−5t2+6t3−6t4+5t5−3t6+2t7−t8 (1−v4+2v6−v8)+(1−v2−v4+2v6)*z2+(−v2−v4)*z4
913 9a34 4−9t+11t2−9t3+4t4 1+7z2+4z4 t2−2t3+4t4−5t5+7t6−6t7+5t8−4t9+2t10−t11 (3v6−v8−v10)+(2v4+5v6+v8−v10)*z2+(v4+2v6+v8)*z4
914 9a17 2−9t+15t2−9t3+2t4 1−z2+2z4 t−6−2t−5+3t−4−5t−3+6t−2−6t−1+6−4t+3t2−t3 (v−6−2v−4+v−2+1)+(−2v−4+v−2+1−v2)*z2+(v−2+1)*z4
915 9a10 2−10*t+15t2−10*t3+2t4 1+2z2−2z4 −t−8+2t−7−4t−6+6t−5−6t−4+7t−3−6t−2+4t−1−2+t (−v−8+v−6+v−4−v−2+1)+(2v−6−v−2+1)*z2+(−v−4−v−2)*z4
916 9a25 2−5t+8t2−9t3+8t4−5t5+2t6 1+6z2+7z4+2z6 t3−t4+4t5−5t6+6t7−7t8+6t9−5t10+3t11−t12 (4v6−3v8)+(8v6−2v10)*z2+(5v6+3v8−v10)*z4+(v6+v8)*z6
917 9a14 1−5t+9t2−9t3+9t4−5t5+t6 1−2z2+z4+z6 t−3−2t−2+4t−1−5+6t−7t2+6t3−4t4+3t5−t6 (2v−2−3+2v2)+(v−2−6+5v2−2v4)*z2+(−2+4v2−v4)*z4+(v2)*z6
918 9a24 4−10*t+13t2−10*t3+4t4 1+6z2+4z4 t2−2t3+5t4−6t5+7t6−7t7+6t8−4t9+2t10−t11 (v4+v6−v10)+(2v4+4v6+v8−v10)*z2+(v4+2v6+v8)*z4
919 9a3 2−10*t+17t2−10*t3+2t4 1−2z2+2z4 t−4−2t−3+4t−2−6t−1+7−7t+6t2−4t3+3t4−t5 (v−4−v−2+v2)+(−2v−2+v2−v4)*z2+(1+v2)*z4
920 9a19 1−5t+9t2−11t3+9t4−5t5+t6 1+2z2−z4−z6 1−2t+4t2−5t3+7t4−7t5+6t6−5t7+3t8−t9 (2v2−2v4+2v6−v8)+(3v2−5v4+5v6−v8)*z2+(v2−4v4+2v6)*z4+(−v4)*z6
921 9a21 2−11t+17t2−11t3+2t4 1+3z2−2z4 −t−8+2t−7−4t−6+6t−5−7t−4+8t−3−6t−2+5t−1−3+t (−v−8+v−6+v−2)+(2v−6+1)*z2+(−v−4−v−2)*z4
922 9a2 1−5t+10*t2−11t3+10*t4−5t5+t6 1−z2+z4+z6 t−3−2t−2+4t−1−6+7t−7t2+7t3−5t4+3t5−t6 (2v−2−4+4v2−v4)+(v−2−6+6v2−2v4)*z2+(−2+4v2−v4)*z4+(v2)*z6
923 9a16 4−11t+15t2−11t3+4t4 1+5z2+4z4 t2−2t3+5t4−6t5+8t6−8t7+6t8−5t9+3t10−t11 (v4+2v6−2v8)+(2v4+4v6−v10)*z2+(v4+2v6+v8)*z4
924 9a7 1−5t+10*t2−13t3+10*t4−5t5+t6 1+z2−z4−z6 t−4−3t−3+5t−2−7t−1+8−7t+7t2−4t3+2t4−t5 (v−2−3+5v2−2v4)+(2v−2−6+6v2−v4)*z2+(v−2−4+2v2)*z4+(−1)*z6
925 9a4 3−12t+17t2−12t3+3t4 1−3z4 t−1−2+5t−7t2+8t3−8t4+7t5−5t6+3t7−t8 (1+v2−3v4+3v6−v8)+(1−4v4+3v6)*z2+(−v2−2v4)*z4
926 9a15 1−5t+11t2−13t3+11t4−5t5+t6 1+z4+z6 t−7−3t−6+5t−5−7t−4+8t−3−8t−2+7t−1−4+3t−t2 (v−6−3v−4+3v−2)+(v−6−5v−4+6v−2−2)*z2+(−2v−4+4v−2−1)*z4+(v−2)*z6
927 9a12 1−5t+11t2−15t3+11t4−5t5+t6 1−z4−z6 t−4−3t−3+5t−2−7t−1+9−8t+7t2−5t3+3t4−t5 (v−2−2+3v2−v4)+(2v−2−6+5v2−v4)*z2+(v−2−4+2v2)*z4+(−1)*z6
928 9a5 1−5t+12t2−15t3+12t4−5t5+t6 1+z2+z4+z6 −t−2+3t−1−5+8t−8t2+9t3−8t4+5t5−3t6+t7 (−1+5v2−4v4+v6)+(−2+7v2−5v4+v6)*z2+(−1+4v2−2v4)*z4+(v2)*z6
929 9a31 1−5t+12t2−15t3+12t4−5t5+t6 1+z2+z4+z6 −t−6+3t−5−6t−4+8t−3−8t−2+9t−1−7+5t−3t2+t3 (−2v−4+5v−2−3+v2)+(−2v−4+7v−2−5+v2)*z2+(−v−4+4v−2−2)*z4+(v−2)*z6
930 9a1 1−5t+12t2−17t3+12t4−5t5+t6 1−z2−z4−z6 −t−5+3t−4−5t−3+8t−2−9t−1+9−8t+6t2−3t3+t4 (−v−4+4v−2−4+2v2)+(−v−4+5v−2−7+2v2)*z2+(2v−2−4+v2)*z4+(−1)*z6
931 9a13 1−5t+13t2−17t3+13t4−5t5+t6 1+2z2+z4+z6 −t−2+3t−1−5+8t−9t2+10*t3−8t4+6t5−4t6+t7 (−1+4v2−2v4)+(−2+7v2−4v4+v6)*z2+(−1+4v2−2v4)*z4+(v2)*z6
932 9a6 1−6t+14t2−17t3+14t4−6t5+t6 1−z2+z6 t−7−3t−6+6t−5−9t−4+10*t−3−10*t−2+9t−1−6+4t−t2 (v−6−2v−4+v−2+1)+(v−6−4v−4+3v−2−1)*z2+(−2v−4+3v−2−1)*z4+(v−2)*z6
933 9a11 1−6t+14t2−19t3+14t4−6t5+t6 1+z2−z6 −t−5+3t−4−6t−3+9t−2−10*t−1+11−9t+7t2−4t3+t4 (−v−4+2v−2)+(−v−4+4v−2−3+v2)*z2+(2v−2−3+v2)*z4+(−1)*z6
934 9a28 1−6t+16t2−23t3+16t4−6t5+t6 1−z2−z6 −t−5+4t−4−7t−3+10*t−2−12t−1+12−10*t1+8t2−4t3+t4 (v−2−1+v2)+(−v−4+3v−2−4+v2)*z2+(v2−3+2v−2)*z4+(−1)*z6
935 9a40 7−13t+7t2 1+7z2 t−2t2+3t3−4t4+5t5−3t6+4t7−3t8+t9−t10 (3v6−v8−v10)+(v2+2v4+3v6+v8)*z2
936 9a9 1−5t+8t2−9t3+8t4−5t5+t6 1+3z2−z4−z6 −t−9+2t−8−4t−7+6t−6−6t−5+6t−4−5t−3+4t−2−2t−1+1 (−2v−8+4v−6−3v−4+2v−2)+(−v−8+6v−6−5v−4+3v−2)*z2+(2v−6−4v−4+v−2)*z4+(−v−4)*z6
937 9a18 2−11t+19t2−11t3+2t4 1−3z2+2z4 t−4−2t−3+5t−2−7t−1+7−8t+7t2−4t3+3t4−t5 (v−4−2+2v2)+(−2v−2−1+v2−v4)*z2+(1+v2)*z4
938 9a30 5−14t+19t2−14t3+5t4 1+6z2+5z4 t2−3t3+7t4−8t5+10*t6−10*t7+8t8−6t9+3t10−t11 (4v6−3v8)+(v4+7v6−v8−v10)*z2+(v4+3v6+v8)*z4
939 9a32 3−14t+21t2−14t3+3t4 1+2z2−3z4 −t−8+3t−7−6t−6+8t−5−9t−4+10*t−3−8t−2+6t−1−3+t (−v−8+2v−6−2v−4+2v−2)+(3v−6−3v−4+v−2+1)*z2+(−2v−4−v−2)*z4
940 9a37 1−7t+18t2−23t3+18t4−7t5+t6 1−z2−z4+z6 −t−2+5t−1−8+11t−13t2+13t3−11t4+8t5−4t6+t7 (2−2v2+v4)+(−2v4+v6)*z2+(−1+2v2−2v4)*z4+(v2)*z6
941 9a29 3−12t+19t2−12t3+3t4 1+3z4 t−6−3t−5+5t−4−7t−3+8t−2−8t−1+8−5t+3t2−t3 (v−6−3v−4+3v−2)+(−3v−4+4v−2−v2)*z2+(2v−2+1)*z4
942 9n4 1−2t+t2−2t3+t4 1−2z2−z4 t−3−t−2+t−1−1+t−t2+t3 (2v−2−3+2v2)+(v−2−4+v2)*z2+(−1)*z4
943 9n3 1−3t+2t2−t3+2t4−3t5+t6 1+z2−3z4−z6 1−t+2t2−2t3+2t4−2t5+2t6−t7 (3v2−4v4+3v6−v8)+(4v2−7v4+4v6)*z2+(v2−5v4+v6)*z4+(−v4)*z6
944 9n1 1−4t+7t2−4t3+t4 1+z4 t−2−2t−1+3−3t+3t2−2t3+2t4−t5 (v−2−2+3v2−v4)+(−2+3v2−v4)*z2+(v2)*z4
945 9n2 1−6t+9t2−6t3+t4 1+2z2−z4 −t−8+2t−7−3t−6+4t−5−4t−4+4t−3−3t−2+2t−1 (−v−8+2v−6−2v−4+2v−2)+(2v−6−2v−4+2v−2)*z2+(−v−4)*z4
946 9n5 2−5t+2t2 1−2z2 t−6−t−5+t−4−2t−3+t−2−t−1+2 (v−6−v−4−v−2+2)+(−v−4−v−2)*z2
947 9n7 1−4t+6t2−5t3+6t4−4t5+t6 1−z2+2z4+z6 −t−2+3t−1−3+5t−5t2+4t3−4t4+2t5 (1+v2−2v4+v6)+(−2+4v2−3v4)*z2+(−1+4v2−v4)*z4+(v2)*z6
948 9n6 1−7t+11t2−7t3+t4 1+3z2−z4 −2t−6+3t−5−4t−4+6t−3−4t−2+4t−1−3+t (−2v−6+3v−4)+(3v−4−v−2+1)*z2+(−v−2)*z4
949 9n8 3−6t+7t2−6t3+3t4 1+6z2+3z4 t2−2t3+4t4−4t5+5t6−4t7+3t8−2t9 (4v6−3v8)+(2v4+6v6−2v8)*z2+(v4+2v6)*z4
101 10a75 4−9t+4t2 1−4z2 t−2−t−1+2−2t+2t2−2t3+2t4−2t5+t6−t7+t8 (v−2−v6+v8)+(−1−v2−v4−v6)*z2
102 10a59 1−3t+3t2−3t3+3t4−3t5+3t6−3t7+t8 1+2z2−5z4−5z6−z8 t−t2+2t3−2t4+3t5−3t6+3t7−3t8+2t9−2t10+t11 (4v4−4v6+v8)+(10*v4−14v6+6v8)*z2+(6v4−16v6+5v8)*z4+(v4−7v6+v8)*z6+(−v6)*z8
103 10a117 6−13t+6t2 1−6z2 t−4−t−3+2t−2−3t−1+4−4t+3t2−3t3+2t4−t5+t6 (v−4−v2+v6)+(−v−2−2−2v2−v4)*z2
104 10a113 3−7t+7t2−7t3+3t4 1−5z2−3z4 t−5−2t−4+3t−3−3t−2+4t−1−4+3t−3t2+2t3−t4+t5 (v−4−2v2+2v4)+(v−4−2v−2−2−3v2+v4)*z2+(−v−2−1−v2)*z4
105 10a56 1−3t+5t2−5t3+5t4−5t5+5t6−3t7+t8 1+4z2+7z4+5z6+z8 −t−9+2t−8−3t−7+4t−6−5t−5+5t−4−4t−3+4t−2−2t−1+2−t (−3v−6+5v−4−v−2)+(−7v−6+17v−4−6v−2)*z2+(−5v−6+17v−4−5v−2)*z4+(−v−6+7v−4−v−2)*z6+(v−4)*z8
106 10a70 2−6t+7t2−7t3+7t4−6t5+2t6 1−z2−6z4−2z6 1−t+3t2−4t3+5t4−6t5+6t6−5t7+3t8−2t9+t10 (3v2−2v4−v6+v8)+(4v2−4v4−4v6+3v8)*z2+(v2−4v4−4v6+v8)*z4+(−v4−v6)*z6
107 10a65 3−11t+15t2−11t3+3t4 1−z2−3z4 t−1−2+4t−5t2+7t3−7t4+6t5−5t6+3t7−2t8+t9 (1+v4−2v6+v8)+(1−v2−2v6+v8)*z2+(−v2−v4−v6)*z4
108 10a114 2−5t+5t2−5t3+5t4−5t5+2t6 1−3z2−7z4−2z6 t−2−t−1+2−3t+4t2−4t3+4t4−4t5+3t6−2t7+t8 (3−3v2+v6)+(4−7v2−3v4+3v6)*z2+(1−5v2−4v4+v6)*z4+(−v2−v4)*z6
109 10a110 1−3t+5t2−7t3+7t4−7t5+5t6−3t7+t8 1−2z2−7z4−5z6−z8 t−3−2t−2+3t−1−4+6t−6t2+6t3−5t4+3t5−2t6+t7 (3−4v2+2v4)+(7−16v2+7v4)*z2+(5−17v2+5v4)*z4+(1−7v2+v4)*z6+(−v2)*z8
1010 10a64 3−11t+17t2−11t3+3t4 1+z2+3z4 −t−7+2t−6−3t−5+5t−4−6t−3+7t−2−7t−1+6−4t+3t2−t3 (−v−6+2v−4−v−2+1)+(−v−6+2v−4+1−v2)*z2+(v−4+v−2+1)*z4
1011 10a116 4−11t+13t2−11t3+4t4 1−5z2−4z4 t−3−t−2+3t−1−5+6t−7t2+7t3−6t4+4t5−2t6+t7 (2v−2−1−v2+v6)+(v−2−2−4v2−v4+v6)*z2+(−1−2v2−v4)*z4
1012 10a43 2−6t+10*t2−11t3+10*t4−6t5+2t6 1+4z2+6z4+2z6 −t−8+2t−7−4t−6+6t−5−7t−4+8t−3−7t−2+6t−1−3+2t−t2 (−2v−6+2v−4+2v−2−1)+(−3v−6+5v−4+5v−2−3)*z2+(−v−6+4v−4+4v−2−1)*z4+(v−4+v−2)*z6
1013 10a54 2−13t+23t2−13t3+2t4 1−5z2+2z4 t−4−2t−3+5t−2−7t−1+8−9t+8t2−6t3+4t4−2t5+t6 (v−4−1+v2−v4+v6)+(−2v−2−1−2v4)*z2+(1+v2)*z4
1014 10a33 2−8t+12t2−13t3+12t4−8t5+2t6 1+2z2−4z4−2z6 1−2t+4t2−6t3+9t4−9t5+9t6−8t7+5t8−3t9+t10 (v2+v4−v6)+(3v2−v4−2v6+2v8)*z2+(v2−3v4−3v6+v8)*z4+(−v4−v6)*z6
1015 10a68 2−6t+9t2−9t3+9t4−6t5+2t6 1+3z2+6z4+2z6 −t−6+2t−5−4t−4+6t−3−6t−2+7t−1−6+5t−3t2+2t3−t4 (−2v−4+3v−2+1−v2)+(−3v−4+5v−2+4−3v2)*z2+(−v−4+4v−2+4−v2)*z4+(v−2+1)*z6
1016 10a115 4−12t+15t2−12t3+4t4 1−4z2−4z4 t−3−2t−2+4t−1−5+7t−8t2+7t3−6t4+4t5−2t6+t7 (v−2+1−2v2+v6)+(v−2−1−4v2−v4+v6)*z2+(−1−2v2−v4)*z4
1017 10a107 1−3t+5t2−7t3+9t4−7t5+5t6−3t7+t8 1+2z2+7z4+5z6+z8 −t−5+2t−4−3t−3+5t−2−6t−1+7−6t+5t2−3t3+2t4−t5 (−2v−2+5−2v2)+(−7v−2+16−7v2)*z2+(−5v−2+17−5v2)*z4+(−v−2+7−v2)*z6+(1)*z8
1018 10a63 4−14t+19t2−14t3+4t4 1−2z2−4z4 t−3−2t−2+4t−1−6+8t−9t2+9t3−7t4+5t5−3t6+t7 (v−2−v2+v4)+(v−2−1−3v2+v6)*z2+(−1−2v2−v4)*z4
1019 10a108 2−7t+11t2−11t3+11t4−7t5+2t6 1+z2+5z4+2z6 −t−4+2t−3−3t−2+6t−1−7+8t−8t2+7t3−5t4+3t5−t6 (−v−2+3−v2)+(−3v−2+5+v2−2v4)*z2+(−v−2+4+3v2−v4)*z4+(1+v2)*z6
1020 10a74 3−9t+11t2−9t3+3t4 1−3z2−3z4 t−1−1+3t−4t2+5t3−6t4+5t5−4t6+3t7−2t8+t9 (2−v2−v6+v8)+(1−2v2−v4−2v6+v8)*z2+(−v2−v4−v6)*z4
1021 10a60 2−7t+9t2−9t3+9t4−7t5+2t6 1+z2−5z4−2z6 1−2t+4t2−5t3+7t4−7t5+7t6−6t7+3t8−2t9+t10 (v2+2v4−3v6+v8)+(3v2−5v6+3v8)*z2+(v2−3v4−4v6+v8)*z4+(−v4−v6)*z6
1022 10a112 2−6t+10*t2−13t3+10*t4−6t5+2t6 1−4z2−6z4−2z6 t−4−2t−3+4t−2−6t−1+8−8t+7t2−6t3+4t4−2t5+t6 (2v−2−1−2v2+2v4)+(3v−2−5−5v2+3v4)*z2+(v−2−4−4v2+v4)*z4+(−1−v2)*z6
1023 10a57 2−7t+13t2−15t3+13t4−7t5+2t6 1+3z2+5z4+2z6 −t−8+2t−7−4t−6+7t−5−9t−4+10*t−3−9t−2+8t−1−5+3t−t2 (−2v−6+3v−4)+(−3v−6+6v−4+2v−2−2)*z2+(−v−6+4v−4+3v−2−1)*z4+(v−4+v−2)*z6
1024 10a71 4−14t+19t2−14t3+4t4 1−2z2−4z4 t−1−2+5t−7t2+9t3−9t4+8t5−7t6+4t7−2t8+t9 (1+v2−v4−v6+v8)+(1−3v4−v6+v8)*z2+(−v2−2v4−v6)*z4
1025 10a61 2−8t+14t2−17t3+14t4−8t5+2t6 1−4z4−2z6 1−2t+5t2−7t3+10*t4−11t5+10*t6−9t7+6t8−3t9+t10 (2v2−2v6+v8)+(3v2−2v4−3v6+2v8)*z2+(v2−3v4−3v6+v8)*z4+(−v4−v6)*z6
1026 10a111 2−7t+13t2−17t3+13t4−7t5+2t6 1−3z2−5z4−2z6 t−4−3t−3+6t−2−8t−1+10−10*t+9t2−7t3+4t4−2t5+t6 (v−2+1−3v2+2v4)+(2v−2−2−6v2+3v4)*z2+(v−2−3−4v2+v4)*z4+(−1−v2)*z6
1027 10a58 2−8t+16t2−19t3+16t4−8t5+2t6 1+2z2+4z4+2z6 −t−8+3t−7−6t−6+9t−5−11t−4+12t−3−11t−2+9t−1−5+3t−t2 (−v−6+v−4+v−2)+(−2v−6+3v−4+3v−2−2)*z2+(−v−6+3v−4+3v−2−1)*z4+(v−4+v−2)*z6
1028 10a44 4−13t+19t2−13t3+4t4 1+3z2+4z4 −t−7+2t−6−4t−5+6t−4−7t−3+9t−2−8t−1+7−5t+3t2−t3 (−v−6+3v−2−1)+(−v−6+v−4+4v−2−v2)*z2+(v−4+2v−2+1)*z4
1029 10a53 1−7t+15t2−17t3+15t4−7t5+t6 1−4z2−z4+z6 t−3−2t−2+5t−1−7+9t−11t2+10*t3−8t4+6t5−3t6+t7 (2v−2−2+v2−v4+v6)+(v−2−5+3v2−4v4+v6)*z2+(−2+3v2−2v4)*z4+(v2)*z6
1030 10a34 4−17t+25t2−17t3+4t4 1+z2−4z4 t−1−3+6t−8t2+11t3−11t4+10*t5−8t6+5t7−3t8+t9 (2v2−v4)+(1+v2−2v4+v8)*z2+(−v2−2v4−v6)*z4
1031 10a69 4−14t+21t2−14t3+4t4 1+2z2+4z4 −t−5+2t−4−4t−3+7t−2−8t−1+10−9t+7t2−5t3+3t4−t5 (−v−4+v−2+2−v2)+(−v−4+v−2+3−v4)*z2+(v−2+2+v2)*z4
1032 10a55 2−8t+15t2−19t3+15t4−8t5+2t6 1−z2−4z4−2z6 t−4−3t−3+6t−2−9t−1+11−11t+11t2−8t3+5t4−3t5+t6 (v−2−1+v2)+(2v−2−3−2v2+2v4)*z2+(v−2−3−3v2+v4)*z4+(−1−v2)*z6
1033 10a109 4−16t+25t2−16t3+4t4 1+4z4 −t−5+3t−4−5t−3+8t−2−10*t−1+11−10*t+8t2−5t3+3t4−t5 (1)+(−v−4+2−v4)*z2+(v−2+2+v2)*z4
1034 10a19 3−9t+13t2−9t3+3t4 1+3z2+3z4 −t−7+2t−6−3t−5+4t−4−5t−3+6t−2−5t−1+5−3t+2t2−t3 (−v−6+v−4+2−v2)+(−v−6+2v−4+v−2+2−v2)*z2+(v−4+v−2+1)*z4
1035 10a23 2−12t+21t2−12t3+2t4 1−4z2+2z4 t−6−2t−5+4t−4−6t−3+7t−2−8t−1+8−6t+4t2−2t3+t4 (v−6−v−4+1−v2+v4)+(−2v−4−2v2)*z2+(v−2+1)*z4
1036 10a5 3−13t+19t2−13t3+3t4 1+z2−3z4 t−1−2+4t−6t2+8t3−8t4+8t5−6t6+4t7−3t8+t9 (1−v2+2v4−v6)+(1−v2+v4−v6+v8)*z2+(−v2−v4−v6)*z4
1037 10a49 4−13t+19t2−13t3+4t4 1+3z2+4z4 −t−5+2t−4−4t−3+7t−2−8t−1+9−8t+7t2−4t3+2t4−t5 (−v−4+v−2+1+v2−v4)+(−v−4+v−2+3+v2−v4)*z2+(v−2+2+v2)*z4
1038 10a29 4−15t+21t2−15t3+4t4 1−z2−4z4 t−1−2+5t−7t2+9t3−10*t4+9t5−7t6+5t7−3t8+t9 (1+v2−2v4+v6)+(1−3v4+v8)*z2+(−v2−2v4−v6)*z4
1039 10a26 2−8t+13t2−15t3+13t4−8t5+2t6 1+z2−4z4−2z6 1−2t+5t2−7t3+9t4−10*t5+10*t6−8t7+5t8−3t9+t10 (2v2−v4)+(3v2−2v4−2v6+2v8)*z2+(v2−3v4−3v6+v8)*z4+(−v4−v6)*z6
1040 10a30 2−8t+17t2−21t3+17t4−8t5+2t6 1+3z2+4z4+2z6 −t−8+3t−7−6t−6+9t−5−12t−4+13t−3−11t−2+10*t−1−6+3t−t2 (−v−6+3v−2−1)+(−2v−6+3v−4+4v−2−2)*z2+(−v−6+3v−4+3v−2−1)*z4+(v−4+v−2)*z6
1041 10a35 1−7t+17t2−21t3+17t4−7t5+t6 1−2z2−z4+z6 t−3−3t−2+6t−1−8+11t−12t2+11t3−9t4+6t5−3t6+t7 (v−2−1+2v2−2v4+v6)+(v−2−4+4v2−4v4+v6)*z2+(−2+3v2−2v4)*z4+(v2)*z6
1042 10a31 1−7t+19t2−27t3+19t4−7t5+t6 1+z4−z6 −t−5+3t−4−6t−3+10*t−2−12t−1+14−13t+10*t2−7t3+4t4−t5 (−v−4+3v−2−2+v2)+(−v−4+4v−2−5+3v2−v4)*z2+(2v−2−3+2v2)*z4+(−1)*z6
1043 10a52 1−7t+17t2−23t3+17t4−7t5+t6 1+2z2+z4−z6 −t−5+3t−4−6t−3+9t−2−11t−1+13−11t+9t2−6t3+3t4−t5 (−v−4+2v−2−1+2v2−v4)+(−v−4+4v−2−4+4v2−v4)*z2+(2v−2−3+2v2)*z4+(−1)*z6
1044 10a32 1−7t+19t2−25t3+19t4−7t5+t6 1−z4+z6 t−3−3t−2+6t−1−9+12t−13t2+13t3−10*t4+7t5−4t6+t7 (v−2−2+3v2−v4)+(v−2−4+5v2−3v4+v6)*z2+(−2+3v2−2v4)*z4+(v2)*z6
1045 10a25 1−7t+21t2−31t3+21t4−7t5+t6 1−2z2+z4−z6 −t−5+4t−4−7t−3+11t−2−14t−1+15−14t+11t2−7t3+4t4−t5 (2v−2−3+2v2)+(−v−4+3v−2−6+3v2−v4)*z2+(2v−2−3+2v2)*z4+(−1)*z6
1046 10a81 1−3t+4t2−5t3+5t4−5t5+4t6−3t7+t8 1−6z4−5z6−z8 t−t2+3t3−3t4+4t5−5t6+4t7−4t8+3t9−2t10+t11 (6v4−8v6+3v8)+(11v4−18v6+7v8)*z2+(6v4−17v6+5v8)*z4+(v4−7v6+v8)*z6+(−v6)*z8
1047 10a15 1−3t+6t2−7t3+7t4−7t5+6t6−3t7+t8 1+6z2+8z4+5z6+z8 −t−9+2t−8−4t−7+5t−6−6t−5+7t−4−5t−3+5t−2−3t−1+2−t (−5v−6+9v−4−3v−2)+(−8v−6+21v−4−7v−2)*z2+(−5v−6+18v−4−5v−2)*z4+(−v−6+7v−4−v−2)*z6+(v−4)*z8
1048 10a79 1−3t+6t2−9t3+11t4−9t5+6t6−3t7+t8 1+4z2+8z4+5z6+z8 −t−5+2t−4−4t−3+6t−2−7t−1+9−7t+6t2−4t3+2t4−t5 (−4v−2+9−4v2)+(−8v−2+20−8v2)*z2+(−5v−2+18−5v2)*z4+(−v−2+7−v2)*z6+(1)*z8
1049 10a13 3−8t+12t2−13t3+12t4−8t5+3t6 1+7z2+10*z4+3z6 t3−2t4+5t5−6t6+9t7−10*t8+9t9−8t10+5t11−3t12+t13 (v6+5v8−7v10+2v12)+(4v6+12v8−10*v10+v12)*z2+(4v6+9v8−3v10)*z4+(v6+2v8)*z6
1050 10a82 2−7t+11t2−13t3+11t4−7t5+2t6 1−z2−5z4−2z6 1−2t+5t2−6t3+8t4−9t5+8t6−7t7+4t8−2t9+t10 (2v2+v4−4v6+2v8)+(3v2−v4−6v6+3v8)*z2+(v2−3v4−4v6+v8)*z4+(−v4−v6)*z6
1051 10a16 2−7t+15t2−19t3+15t4−7t5+2t6 1+5z2+5z4+2z6 −t−8+2t−7−5t−6+8t−5−10*t−4+12t−3−10*t−2+9t−1−6+3t−t2 (−3v−6+4v−4+v−2−1)+(−3v−6+7v−4+3v−2−2)*z2+(−v−6+4v−4+3v−2−1)*z4+(v−4+v−2)*z6
1052 10a80 2−7t+13t2−15t3+13t4−7t5+2t6 1+3z2+5z4+2z6 −t−4+2t−3−4t−2+7t−1−8+10*t−9t2+8t3−6t4+3t5−t6 (−2v−2+4−v4)+(−3v−2+6+2v2−2v4)*z2+(−v−2+4+3v2−v4)*z4+(1+v2)*z6
1053 10a14 6−18t+25t2−18t3+6t4 1+6z2+6z4 t2−3t3+7t4−9t5+12t6−12t7+11t8−9t9+5t10−3t11+t12 (3v6−3v10+v12)+(v4+6v6+2v8−3v10)*z2+(v4+3v6+2v8)*z4
1054 10a48 2−6t+10*t2−11t3+10*t4−6t5+2t6 1+4z2+6z4+2z6 −t−6+2t−5−4t−4+6t−3−7t−2+8t−1−6+6t−4t2+2t3−t4 (−2v−4+2v−2+3−2v2)+(−3v−4+5v−2+5−3v2)*z2+(−v−4+4v−2+4−v2)*z4+(v−2+1)*z6
1055 10a9 5−15t+21t2−15t3+5t4 1+5z2+5z4 t2−2t3+5t4−7t5+10*t6−10*t7+9t8−8t9+5t10−3t11+t12 (v4+v6+v8−3v10+v12)+(2v4+3v6+3v8−3v10)*z2+(v4+2v6+2v8)*z4
1056 10a28 2−8t+14t2−17t3+14t4−8t5+2t6 1−4z4−2z6 1−2t+5t2−7t3+10*t4−11t5+10*t6−9t7+6t8−3t9+t10 (2v2−2v6+v8)+(3v2−2v4−3v6+2v8)*z2+(v2−3v4−3v6+v8)*z4+(−v4−v6)*z6
1057 10a6 2−8t+18t2−23t3+18t4−8t5+2t6 1+4z2+4z4+2z6 −t−8+3t−7−7t−6+10*t−5−12t−4+14t−3−12t−2+10*t−1−6+3t−t2 (−2v−6+2v−4+2v−2−1)+(−2v−6+4v−4+4v−2−2)*z2+(−v−6+3v−4+3v−2−1)*z4+(v−4+v−2)*z6
1058 10a20 3−16t+27t2−16t3+3t4 1−4z2+3z4 t−4−2t−3+5t−2−8t−1+10−11t+10*t2−8t3+6t4−3t5+t6 (v−4−2+3v2−2v4+v6)+(−2v−2−2+3v2−3v4)*z2+(1+2v2)*z4
1059 10a2 1−7t+18t2−23t3+18t4−7t5+t6 1−z2−z4+z6 t−3−3t−2+6t−1−9+12t−12t2+12t3−10*t4+6t5−3t6+t7 (v−2−2+4v2−3v4+v6)+(v−2−4+5v2−4v4+v6)*z2+(−2+3v2−2v4)*z4+(v2)*z6
1060 10a1 1−7t+20*t2−29t3+20*t4−7t5+t6 1−z2+z4−z6 t−6−3t−5+6t−4−10*t−3+13t−2−14t−1+14−11t+8t2−4t3+t4 (v−6−3v−4+4v−2−2+v2)+(−3v−4+6v−2−5+v2)*z2+(3v−2−3+v2)*z4+(−1)*z6
1061 10a123 2−5t+6t2−7t3+6t4−5t5+2t6 1−4z2−7z4−2z6 t−2−t−1+3−4t+4t2−5t3+5t4−4t5+3t6−2t7+t8 (4−5v2+v4+v6)+(4−8v2−3v4+3v6)*z2+(1−5v2−4v4+v6)*z4+(−v2−v4)*z6
1062 10a41 1−3t+6t2−8t3+9t4−8t5+6t6−3t7+t8 1+5z2+8z4+5z6+z8 −t−9+2t−8−4t−7+6t−6−7t−5+7t−4−6t−3+6t−2−3t−1+2−t (−4v−6+7v−4−2v−2)+(−8v−6+20*v−4−7v−2)*z2+(−5v−6+18v−4−5v−2)*z4+(−v−6+7v−4−v−2)*z6+(v−4)*z8
1063 10a51 5−14t+19t2−14t3+5t4 1+6z2+5z4 t2−2t3+5t4−7t5+9t6−9t7+9t8−7t9+4t10−3t11+t12 (v4+3v8−4v10+v12)+(2v4+3v6+4v8−3v10)*z2+(v4+2v6+2v8)*z4
1064 10a122 1−3t+6t2−10*t3+11t4−10*t5+6t6−3t7+t8 1−3z2−8z4−5z6−z8 t−3−2t−2+4t−1−6+8t−8t2+8t3−7t4+4t5−2t6+t7 (4−6v2+3v4)+(8−19v2+8v4)*z2+(5−18v2+5v4)*z4+(1−7v2+v4)*z6+(−v2)*z8
1065 10a42 2−7t+14t2−17t3+14t4−7t5+2t6 1+4z2+5z4+2z6 −t−8+2t−7−5t−6+8t−5−9t−4+11t−3−10*t−2+8t−1−5+3t−t2 (−3v−6+5v−4−v−2)+(−3v−6+7v−4+2v−2−2)*z2+(−v−6+4v−4+3v−2−1)*z4+(v−4+v−2)*z6
1066 10a40 3−9t+16t2−19t3+16t4−9t5+3t6 1+7z2+9z4+3z6 t3−2t4+6t5−8t6+11t7−13t8+12t9−10*t10+7t11−4t12+t13 (2v6+2v8−4v10+v12)+(5v6+9v8−8v10+v12)*z2+(4v6+8v8−3v10)*z4+(v6+2v8)*z6
1067 10a37 4−16t+23t2−16t3+4t4 1−4z4 t−1−2+5t−8t2+10*t3−10*t4+10*t5−8t6+5t7−3t8+t9 (1)+(1−2v4+v8)*z2+(−v2−2v4−v6)*z4
1068 10a67 4−14t+21t2−14t3+4t4 1+2z2+4z4 −t−7+2t−6−4t−5+7t−4−8t−3+9t−2−9t−1+8−5t+3t2−t3 (−v−6+v−4+v−2)+(−v−6+v−4+3v−2−v2)*z2+(v−4+2v−2+1)*z4
1069 10a38 1−7t+21t2−29t3+21t4−7t5+t6 1+2z2−z4+z6 −t−8+3t−7−7t−6+11t−5−13t−4+15t−3−14t−2+11t−1−7+4t−t2 (−v−8+2v−6−2v−4+2v−2)+(3v−6−5v−4+5v−2−1)*z2+(−3v−4+3v−2−1)*z4+(v−2)*z6
1070 10a22 1−7t+16t2−19t3+16t4−7t5+t6 1−3z2−z4+z6 t−7−3t−6+6t−5−9t−4+11t−3−11t−2+10*t−1−8+5t−2t2+t3 (v−6−2v−4+3v−2−3+2v2)+(v−6−4v−4+4v−2−5+v2)*z2+(−2v−4+3v−2−2)*z4+(v−2)*z6
1071 10a10 1−7t+18t2−25t3+18t4−7t5+t6 1+z2+z4−z6 −t−5+3t−4−6t−3+10*t−2−12t−1+13−12t+10*t2−6t3+3t4−t5 (−v−4+3v−2−3+3v2−v4)+(−v−4+4v−2−5+4v2−v4)*z2+(2v−2−3+2v2)*z4+(−1)*z6
1072 10a4 2−9t+16t2−19t3+16t4−9t5+2t6 1+2z2−3z4−2z6 1−2t+5t2−8t3+11t4−12t5+12t6−10*t7+7t8−4t9+t10 (2v2−2v4+2v6−v8)+(3v2−3v4+v6+v8)*z2+(v2−3v4−2v6+v8)*z4+(−v4−v6)*z6
1073 10a3 1−7t+20*t2−27t3+20*t4−7t5+t6 1+z2−z4+z6 −t−8+3t−7−6t−6+10*t−5−13t−4+14t−3−13t−2+11t−1−7+4t−t2 (−v−8+3v−6−4v−4+3v−2)+(3v−6−6v−4+5v−2−1)*z2+(−3v−4+3v−2−1)*z4+(v−2)*z6
1074 10a62 4−16t+23t2−16t3+4t4 1−4z4 t−1−3+6t−8t2+11t3−10*t4+9t5−8t6+4t7−2t8+t9 (2v2−2v6+v8)+(1+v2−2v4−v6+v8)*z2+(−v2−2v4−v6)*z4
1075 10a27 1−7t+19t2−27t3+19t4−7t5+t6 1+z4−z6 t−6−3t−5+6t−4−10*t−3+12t−2−13t−1+14−10*t+7t2−4t3+t4 (v−6−3v−4+3v−2)+(−3v−4+6v−2−4+v2)*z2+(3v−2−3+v2)*z4+(−1)*z6
1076 10a73 2−7t+12t2−15t3+12t4−7t5+2t6 1−2z2−5z4−2z6 1−t+4t2−6t3+8t4−10*t5+9t6−8t7+6t8−3t9+t10 (4v2−4v4+v8)+(4v2−6v4−2v6+2v8)*z2+(v2−4v4−3v6+v8)*z4+(−v4−v6)*z6
1077 10a18 2−7t+14t2−17t3+14t4−7t5+2t6 1+4z2+5z4+2z6 −t−8+3t−7−6t−6+8t−5−10*t−4+11t−3−9t−2+8t−1−4+2t−t2 (−v−6−v−4+5v−2−2)+(−2v−6+2v−4+7v−2−3)*z2+(−v−6+3v−4+4v−2−1)*z4+(v−4+v−2)*z6
1078 10a17 1−7t+16t2−21t3+16t4−7t5+t6 1+3z2+z4−z6 1−3t+6t2−8t3+11t4−11t5+11t6−9t7+5t8−3t9+t10 (v2−v4+4v6−4v8+v10)+(2v2−3v4+7v6−3v8)*z2+(v2−3v4+3v6)*z4+(−v4)*z6
1079 10a78 1−3t+7t2−12t3+15t4−12t5+7t6−3t7+t8 1+5z2+9z4+5z6+z8 −t−5+2t−4−5t−3+8t−2−9t−1+11−9t+8t2−5t3+2t4−t5 (−5v−2+11−5v2)+(−9v−2+23−9v2)*z2+(−5v−2+19−5v2)*z4+(−v−2+7−v2)*z6+(1)*z8
1080 10a8 3−9t+15t2−17t3+15t4−9t5+3t6 1+6z2+9z4+3z6 t3−2t4+6t5−8t6+11t7−12t8+11t9−10*t10+6t11−3t12+t13 (2v6+3v8−6v10+2v12)+(5v6+9v8−9v10+v12)*z2+(4v6+8v8−3v10)*z4+(v6+2v8)*z6
1081 10a7 1−8t+20*t2−27t3+20*t4−8t5+t6 1+3z2+2z4−z6 −t−5+3t−4−7t−3+11t−2−13t−1+15−13t+11t2−7t3+3t4−t5 (−v−4+v−2+1+v2−v4)+(−v−4+3v−2−1+3v2−v4)*z2+(2v−2−2+2v2)*z4+(−1)*z6
1082 10a83 1−4t+8t2−12t3+13t4−12t5+8t6−4t7+t8 1−4z4−4z6−z8 t−3−3t−2+5t−1−7+10*t−10*t2+10*t3−8t4+5t5−3t6+t7 (1)+(4−8v2+4v4)*z2+(4−12v2+4v4)*z4+(1−6v2+v4)*z6+(−v2)*z8
1083 10a87 2−9t+19t2−23t3+19t4−9t5+2t6 1+z2+3z4+2z6 −t−8+3t−7−6t−6+10*t−5−13t−4+14t−3−13t−2+11t−1−7+4t−t2 (−v−6+2v−4−v−2+1)+(−2v−6+4v−4−1)*z2+(−v−6+3v−4+2v−2−1)*z4+(v−4+v−2)*z6
1084 10a50 2−9t+20*t2−25t3+20*t4−9t5+2t6 1+2z2+3z4+2z6 −t−2+3t−1−6+11t−13t2+15t3−14t4+11t5−8t6+4t7−t8 (−1+4v2−2v4)+(−2+5v2−v6)*z2+(−1+3v2+2v4−v6)*z4+(v2+v4)*z6
1085 10a86 1−4t+8t2−10*t3+11t4−10*t5+8t6−4t7+t8 1+2z2+4z4+4z6+z8 −t−9+3t−8−5t−7+7t−6−9t−5+9t−4−8t−3+7t−2−4t−1+3−t (−v−6+v−4+v−2)+(−4v−6+9v−4−3v−2)*z2+(−4v−6+12v−4−4v−2)*z4+(−v−6+6v−4−v−2)*z6+(v−4)*z8
1086 10a84 2−9t+19t2−25t3+19t4−9t5+2t6 1−z2−3z4−2z6 t−4−4t−3+8t−2−11t−1+14−14t+13t2−10*t3+6t4−3t5+t6 (2−2v2+v4)+(v−2−4v2+2v4)*z2+(v−2−2−3v2+v4)*z4+(−1−v2)*z6
1087 10a39 2−9t+18t2−23t3+18t4−9t5+2t6 1−3z4−2z6 t−4−3t−3+6t−2−10*t−1+13−13t+13t2−10*t3+7t4−4t5+t6 (v−2−2+3v2−v4)+(2v−2−4+v2+v4)*z2+(v−2−3−2v2+v4)*z4+(−1−v2)*z6
1088 10a11 1−8t+24t2−35t3+24t4−8t5+t6 1−z2+2z4−z6 −t−5+4t−4−8t−3+13t−2−16t−1+17−16t+13t2−8t3+4t4−t5 (v−2−1+v2)+(−v−4+2v−2−3+2v2−v4)*z2+(2v−2−2+2v2)*z4+(−1)*z6
1089 10a21 1−8t+24t2−33t3+24t4−8t5+t6 1+z2−2z4+z6 −t−8+3t−7−7t−6+12t−5−15t−4+17t−3−16t−2+13t−1−9+5t−t2 (−v−8+2v−6−v−4+1)+(3v−6−4v−4+2v−2)*z2+(−3v−4+2v−2−1)*z4+(v−2)*z6
1090 10a92 2−8t+17t2−23t3+17t4−8t5+2t6 1−3z2−4z4−2z6 t−4−3t−3+7t−2−10*t−1+12−13t+12t2−9t3+6t4−3t5+t6 (2v−2−2+v4)+(2v−2−4−3v2+2v4)*z2+(v−2−3−3v2+v4)*z4+(−1−v2)*z6
1091 10a106 1−4t+9t2−14t3+17t4−14t5+9t6−4t7+t8 1+2z2+5z4+4z6+z8 −t−5+3t−4−6t−3+9t−2−11t−1+13−11t+9t2−6t3+3t4−t5 (−2v−2+5−2v2)+(−5v−2+12−5v2)*z2+(−4v−2+13−4v2)*z4+(−v−2+6−v2)*z6+(1)*z8
1092 10a46 2−10*t+20*t2−25t3+20*t4−10*t5+2t6 1+2z2−2z4−2z6 1−3t+7t2−10*t3+14t4−15t5+14t6−12t7+8t8−4t9+t10 (v2+v4−v6)+(2v2−v6+v8)*z2+(v2−2v4−2v6+v8)*z4+(−v4−v6)*z6
1093 10a101 2−8t+15t2−17t3+15t4−8t5+2t6 1+z2+4z4+2z6 −t−6+3t−5−6t−4+9t−3−10*t−2+11t−1−10+8t−5t2+3t3−t4 (−v−4+2v−2)+(−2v−4+3v−2+2−2v2)*z2+(−v−4+3v−2+3−v2)*z4+(v−2+1)*z6
1094 10a91 1−4t+9t2−14t3+15t4−14t5+9t6−4t7+t8 1−2z2−5z4−4z6−z8 t−3−3t−2+6t−1−8+11t−12t2+11t3−9t4+6t5−3t6+t7 (3−4v2+2v4)+(5−12v2+5v4)*z2+(4−13v2+4v4)*z4+(1−6v2+v4)*z6+(−v2)*z8
1095 10a47 2−9t+21t2−27t3+21t4−9t5+2t6 1+3z2+3z4+2z6 −t−8+3t−7−7t−6+11t−5−14t−4+16t−3−14t−2+12t−1−8+4t−t2 (−2v−6+3v−4)+(−2v−6+5v−4+v−2−1)*z2+(−v−6+3v−4+2v−2−1)*z4+(v−4+v−2)*z6
1096 10a24 1−7t+22t2−33t3+22t4−7t5+t6 1−3z2+z4−z6 t−6−3t−5+7t−4−11t−3+14t−2−16t−1+15−12t+9t2−4t3+t4 (v−6−2v−4+3v−2−3+2v2)+(−3v−4+5v−2−6+v2)*z2+(3v−2−3+v2)*z4+(−1)*z6
1097 10a12 5−22t+33t2−22t3+5t4 1+2z2−5z4 t−1−3+7t−11t2+14t3−14t4+14t5−11t6+7t7−4t8+t9 (2v2−2v4+2v6−v8)+(1+2v2−4v4+2v6+v8)*z2+(−v2−3v4−v6)*z4
1098 10a96 2−9t+18t2−23t3+18t4−9t5+2t6 1−3z4−2z6 1−3t+7t2−9t3+13t4−14t5+12t6−11t7+7t8−3t9+t10 (v2+3v4−5v6+2v8)+(2v2+v4−5v6+2v8)*z2+(v2−2v4−3v6+v8)*z4+(−v4−v6)*z6
1099 10a103 1−4t+10*t2−16t3+19t4−16t5+10*t6−4t7+t8 1+4z2+6z4+4z6+z8 −t−5+3t−4−7t−3+10*t−2−12t−1+15−12t+10*t2−7t3+3t4−t5 (−4v−2+9−4v2)+(−6v−2+16−6v2)*z2+(−4v−2+14−4v2)*z4+(−v−2+6−v2)*z6+(1)*z8
10100 10a104 1−4t+9t2−12t3+13t4−12t5+9t6−4t7+t8 1+4z2+5z4+4z6+z8 −t−9+3t−8−6t−7+8t−6−10*t−5+11t−4−9t−3+8t−2−5t−1+3−t (−3v−6+5v−4−v−2)+(−5v−6+13v−4−4v−2)*z2+(−4v−6+13v−4−4v−2)*z4+(−v−6+6v−4−v−2)*z6+(v−4)*z8
10101 10a45 7−21t+29t2−21t3+7t4 1+7z2+7z4 t2−3t3+7t4−10*t5+14t6−14t7+13t8−11t9+7t10−4t11+t12 (2v6+2v8−4v10+v12)+(v4+5v6+5v8−4v10)*z2+(v4+3v6+3v8)*z4
10102 10a97 2−8t+16t2−21t3+16t4−8t5+2t6 1−2z2−4z4−2z6 t−4−3t−3+6t−2−9t−1+12−12t+11t2−9t3+6t4−3t5+t6 (v−2−v2+v4)+(2v−2−3−3v2+2v4)*z2+(v−2−3−3v2+v4)*z4+(−1−v2)*z6
10103 10a105 2−8t+17t2−21t3+17t4−8t5+2t6 1+3z2+4z4+2z6 −t−8+3t−7−6t−6+9t−5−12t−4+13t−3−11t−2+10*t−1−6+3t−t2 (−v−6+3v−2−1)+(−2v−6+3v−4+4v−2−2)*z2+(−v−6+3v−4+3v−2−1)*z4+(v−4+v−2)*z6
10104 10a118 1−4t+9t2−15t3+19t4−15t5+9t6−4t7+t8 1+z2+5z4+4z6+z8 −t−5+3t−4−6t−3+10*t−2−12t−1+13−12t+10*t2−6t3+3t4−t5 (−v−2+3−v2)+(−5v−2+11−5v2)*z2+(−4v−2+13−4v2)*z4+(−v−2+6−v2)*z6+(1)*z8
10105 10a72 1−8t+22t2−29t3+22t4−8t5+t6 1−z2−2z4+z6 t−3−3t−2+7t−1−11+14t−15t2+15t3−12t4+8t5−4t6+t7 (v−2−1+v2)+(v−2−3+2v2−2v4+v6)*z2+(−2+2v2−2v4)*z4+(v2)*z6
10106 10a95 1−4t+9t2−15t3+17t4−15t5+9t6−4t7+t8 1−z2−5z4−4z6−z8 t−3−3t−2+6t−1−9+12t−12t2+12t3−10*t4+6t5−3t6+t7 (2−2v2+v4)+(5−11v2+5v4)*z2+(4−13v2+4v4)*z4+(1−6v2+v4)*z6+(−v2)*z8
10107 10a66 1−8t+22t2−31t3+22t4−8t5+t6 1+z2+2z4−z6 −t−5+3t−4−7t−3+12t−2−14t−1+16−15t+12t2−8t3+4t4−t5 (−v−4+2v−2)+(−v−4+3v−2−2+2v2−v4)*z2+(2v−2−2+2v2)*z4+(−1)*z6
10108 10a119 2−8t+14t2−15t3+14t4−8t5+2t6 1+4z4+2z6 −t−4+3t−3−5t−2+8t−1−9+10*t−10*t2+8t3−5t4+3t5−t6 (1)+(−2v−2+2+2v2−2v4)*z2+(−v−2+3+3v2−v4)*z4+(1+v2)*z6
10109 10a93 1−4t+10*t2−17t3+21t4−17t5+10*t6−4t7+t8 1+3z2+6z4+4z6+z8 −t−5+3t−4−7t−3+11t−2−13t−1+15−13t+11t2−7t3+3t4−t5 (−3v−2+7−3v2)+(−6v−2+15−6v2)*z2+(−4v−2+14−4v2)*z4+(−v−2+6−v2)*z6+(1)*z8
10110 10a100 1−8t+20*t2−25t3+20*t4−8t5+t6 1−3z2−2z4+z6 t−3−3t−2+7t−1−10+13t−14t2+13t3−11t4+7t5−3t6+t7 (v−2−v4+v6)+(v−2−3+v2−3v4+v6)*z2+(−2+2v2−2v4)*z4+(v2)*z6
10111 10a98 2−9t+17t2−21t3+17t4−9t5+2t6 1+z2−3z4−2z6 1−3t+7t2−9t3+12t4−13t5+12t6−10*t7+6t8−3t9+t10 (v2+2v4−3v6+v8)+(2v2+v4−4v6+2v8)*z2+(v2−2v4−3v6+v8)*z4+(−v4−v6)*z6
10112 10a76 1−5t+11t2−17t3+19t4−17t5+11t6−5t7+t8 1+2z2−z4−3z6−z8 t−7−4t−6+7t−5−11t−4+14t−3−14t−2+14t−1−10+7t−4t2+t3 (−2v−4+4v−2−1)+(v−4+1)*z2+(3v−4−7v−2+3)*z4+(v−4−5v−2+1)*z6+(−v−2)*z8
10113 10a36 2−11t+26t2−33t3+26t4−11t5+2t6 1+z4+2z6 −t−2+4t−1−8+14t−17t2+19t3−18t4+14t5−10*t6+5t7−t8 (3v2−3v4+v6)+(−1+3v2−2v4)*z2+(−1+2v2+v4−v6)*z4+(v2+v4)*z6
10114 10a77 2−10*t+21t2−27t3+21t4−10*t5+2t6 1+z2−2z4−2z6 t−6−4t−5+7t−4−11t−3+15t−2−15t−1+15−12t+8t2−4t3+t4 (−v−4+2v−2)+(v−4−1+v2)*z2+(v−4−2v−2−2+v2)*z4+(−v−2−1)*z6
10115 10a94 1−9t+26t2−37t3+26t4−9t5+t6 1+z2+3z4−z6 −t−5+4t−4−9t−3+14t−2−17t−1+19−17t+14t2−9t3+4t4−t5 (−v−2+3−v2)+(−v−4+v−2+1+v2−v4)*z2+(2v−2−1+2v2)*z4+(−1)*z6
10116 10a120 1−5t+12t2−19t3+21t4−19t5+12t6−5t7+t8 1−2z4−3z6−z8 t−7−4t−6+8t−5−12t−4+15t−3−16t−2+15t−1−11+8t−4t2+t3 (1)+(2v−4−4v−2+2)*z2+(3v−4−8v−2+3)*z4+(v−4−5v−2+1)*z6+(−v−2)*z8
10117 10a99 2−10*t+24t2−31t3+24t4−10*t5+2t6 1+2z2+2z4+2z6 −t−8+4t−7−9t−6+13t−5−16t−4+18t−3−16t−2+13t−1−8+4t−t2 (−v−6+v−4+v−2)+(−v−6+2v−4+2v−2−1)*z2+(−v−6+2v−4+2v−2−1)*z4+(v−4+v−2)*z6
10118 10a88 1−5t+12t2−19t3+23t4−19t5+12t6−5t7+t8 1+2z4+3z6+z8 −t−5+4t−4−8t−3+12t−2−15t−1+17−15t+12t2−8t3+4t4−t5 (1)+(−2v−2+4−2v2)*z2+(−3v−2+8−3v2)*z4+(−v−2+5−v2)*z6+(1)*z8
10119 10a85 2−10*t+23t2−31t3+23t4−10*t5+2t6 1−z2−2z4−2z6 t−6−4t−5+8t−4−12t−3+16t−2−17t−1+16−13t+9t2−4t3+t4 (v−2−1+v2)+(v−4−v−2−2+v2)*z2+(v−4−2v−2−2+v2)*z4+(−v−2−1)*z6
10120 10a102 8−26t+37t2−26t3+8t4 1+6z2+8z4 t2−4t3+10*t4−13t5+17t6−18t7+16t8−13t9+8t10−4t11+t12 (3v6−3v10+v12)+(7v6+3v8−4v10)*z2+(v4+4v6+3v8)*z4
10121 10a90 2−11t+27t2−35t3+27t4−11t5+2t6 1+z2+z4+2z6 −t−2+5t−1−10+15t−18t2+20*t3−18t4+14t5−9t6+4t7−t8 (1−v2+2v4−v6)+(−v2+3v4−v6)*z2+(−1+v2+2v4−v6)*z4+(v2+v4)*z6
10122 10a89 2−11t+24t2−31t3+24t4−11t5+2t6 1+2z2−z4−2z6 t−6−5t−5+9t−4−13t−3+17t−2−17t−1+17−13t+8t2−4t3+t4 (−2v−4+4v−2−1)+(3v−2−2+v2)*z2+(v−4−v−2−2+v2)*z4+(−v−2−1)*z6
10123 10a121 1−6t+15t2−24t3+29t4−24t5+15t6−6t7+t8 1−2z2−z4+2z6+z8 −t−5+5t−4−10*t−3+15t−2−19t−1+21−19t+15t2−10*t3+5t4−t5 (2v−2−3+2v2)+(v−2−4+v2)*z2+(−2v−2+3−2v2)*z4+(−v−2+4−v2)*z6+(1)*z8
10124 10n21 1−t+t3−t4+t5−t7+t8 1+8z2+14z4+7z6+z8 t4+t6−t10 (7v8−8v10+2v12)+(21v8−14v10+v12)*z2+(21v8−7v10)*z4+(8v8−v10)*z6+(v8)*z8
10125 10n15 1−2t+2t2−t3+2t4−2t5+t6 1+3z2+4z4+z6 −t−4+t−3−t−2+2t−1−1+2t−t2+t3−t4 (−3v−2+7−3v2)+(−4v−2+11−4v2)*z2+(−v−2+6−v2)*z4+(1)*z6
10126 10n17 1−2t+4t2−5t3+4t4−2t5+t6 1+5z2+4z4+z6 −t−8+t−7−2t−6+3t−5−3t−4+4t−3−2t−2+2t−1−1 (−4v−6+7v−4−2v−2)+(−4v−6+12v−4−3v−2)*z2+(−v−6+6v−4−v−2)*z4+(v−4)*z6
10127 10n16 1−4t+6t2−7t3+6t4−4t5+t6 1+z2−2z4−z6 2t2−2t3+4t4−5t5+5t6−5t7+3t8−2t9+t10 (5v4−6v6+2v8)+(7v4−9v6+3v8)*z2+(2v4−5v6+v8)*z4+(−v6)*z6
10128 10n22 2−3t+t2+t3+t4−3t5+2t6 1+7z2+9z4+2z6 t3−t4+2t5−t6+2t7−2t8+t9−t10 (2v6+2v8−4v10+v12)+(6v6+6v8−5v10)*z2+(5v6+5v8−v10)*z4+(v6+v8)*z6
10129 10n18 2−6t+9t2−6t3+2t4 1+2z2+2z4 −t−3+2t−2−3t−1+5−4t+4t2−3t3+2t4−t5 (−v−2+2+v2−v4)+(−v−2+2+2v2−v4)*z2+(1+v2)*z4
10130 10n20 2−4t+5t2−4t3+2t4 1+4z2+2z4 −t−7+t−6−2t−5+3t−4−2t−3+3t−2−2t−1+2−t (−2v−6+2v−4+2v−2−1)+(−v−6+3v−4+3v−2−1)*z2+(v−4+v−2)*z4
10131 10n19 2−8t+11t2−8t3+2t4 1−2z4 2t−3t2+5t3−5t4+5t5−5t6+3t7−2t8+t9 (2v2−2v6+v8)+(2v2−v4−2v6+v8)*z2+(−v4−v6)*z4
10132 10n13 1−t+t2−t3+t4 1+3z2+z4 −t−7+t−6−t−5+t−4+t−2 (−2v−6+3v−4)+(−v−6+4v−4)*z2+(v−4)*z4
10133 10n4 1−5t+7t2−5t3+t4 1+z2−z4 t−t2+3t3−3t4+3t5−3t6+2t7−2t8+t9 (v2+2v4−3v6+v8)+(v2+2v4−3v6+v8)*z2+(−v6)*z4
10134 10n6 2−4t+4t2−3t3+4t4−4t5+2t6 1+6z2+8z4+2z6 t3−t4+3t5−3t6+4t7−4t8+3t9−3t10+t11 (3v6−3v10+v12)+(7v6+3v8−4v10)*z2+(5v6+4v8−v10)*z4+(v6+v8)*z6
10135 10n5 3−9t+13t2−9t3+3t4 1+3z2+3z4 −2t−3+4t−2−5t−1+7−6t+6t2−4t3+2t4−t5 (−2v−2+4−v4)+(−2v−2+5+v2−v4)*z2+(2+v2)*z4
10136 10n3 1−4t+5t2−4t3+t4 1−z4 −t−4+2t−3−2t−2+3t−1−2+2t−2t2+t3 (−v−4+3v−2−2+v2)+(2v−2−3+v2)*z2+(−1)*z4
10137 10n2 1−6t+11t2−6t3+t4 1−2z2+z4 t−2−2t−1+4−4t+4t2−4t3+3t4−2t5+t6 (v−2−1+2v2−2v4+v6)+(−2+2v2−2v4)*z2+(v2)*z4
10138 10n1 1−5t+8t2−7t3+8t4−5t5+t6 1−3z2+z4+z6 t−3−2t−2+4t−1−5+6t−6t2+5t3−4t4+2t5 (2v−2−3+3v2−2v4+v6)+(v−2−6+5v2−3v4)*z2+(−2+4v2−v4)*z4+(v2)*z6
10139 10n27 1−t+2t3−3t4+2t5−t7+t8 1+9z2+14z4+7z6+z8 t4+t6−t8+t9−t10+t11−t12 (6v8−6v10+v12)+(21v8−13v10+v12)*z2+(21v8−7v10)*z4+(8v8−v10)*z6+(v8)*z8
10140 10n29 1−2t+3t2−2t3+t4 1+2z2+z4 1−t+t2−t3+2t4−t5+t6−t7 (1−2v2+4v4−2v6)+(−v2+4v4−v6)*z2+(v4)*z4
10141 10n25 1−3t+4t2−5t3+4t4−3t5+t6 1−z2−3z4−z6 t−2−2t−1+3−3t+4t2−3t3+2t4−2t5+t6 (2−2v2+v4)+(3−7v2+3v4)*z2+(1−5v2+v4)*z4+(−v2)*z6
10142 10n30 2−3t+2t2−t3+2t4−3t5+2t6 1+8z2+9z4+2z6 t3−t4+2t5−2t6+3t7−2t8+2t9−2t10 (v6+4v8−5v10+v12)+(6v6+7v8−5v10)*z2+(5v6+5v8−v10)*z4+(v6+v8)*z6
10143 10n26 1−3t+6t2−7t3+6t4−3t5+t6 1+3z2+3z4+z6 −t−8+2t−7−3t−6+4t−5−5t−4+5t−3−3t−2+3t−1−1 (−2v−6+3v−4)+(−3v−6+8v−4−2v−2)*z2+(−v−6+5v−4−v−2)*z4+(v−4)*z6
10144 10n28 3−10*t+13t2−10*t3+3t4 1−2z2−3z4 2t−1−3+5t−7t2+7t3−6t4+5t5−3t6+t7 (3−4v2+2v4)+(2−5v2+v6)*z2+(−2v2−v4)*z4
10145 10n14 1+t−3t2+t3+t4 1+5z2+z4 −t−10+t−9−t−8+t−7+t−2 (−v−10+v−8−v−6+2v−4)+(v−8+4v−4)*z2+(v−4)*z4
10146 10n23 2−8t+13t2−8t3+2t4 1+2z4 −t−5+3t−4−4t−3+5t−2−6t−1+6−4t+3t2−t3 (1)+(−v−4+v−2+1−v2)*z2+(v−2+1)*z4
10147 10n24 2−7t+9t2−7t3+2t4 1−z2−2z4 t−3−2t−2+3t−1−4+5t−4t2+4t3−3t4+t5 (v−2−1+v2)+(v−2−2−v2+v4)*z2+(−1−v2)*z4
10148 10n12 1−3t+7t2−9t3+7t4−3t5+t6 1+4z2+3z4+z6 −t−8+2t−7−4t−6+5t−5−5t−4+6t−3−4t−2+3t−1−1 (−3v−6+5v−4−v−2)+(−3v−6+9v−4−2v−2)*z2+(−v−6+5v−4−v−2)*z4+(v−4)*z6
10149 10n11 1−5t+9t2−11t3+9t4−5t5+t6 1+2z2−z4−z6 2t2−3t3+6t4−7t5+7t6−7t7+5t8−3t9+t10 (4v4−4v6+v8)+(6v4−6v6+2v8)*z2+(2v4−4v6+v8)*z4+(−v6)*z6
10150 10n9 1−4t+6t2−7t3+6t4−4t5+t6 1+z2−2z4−z6 1−2t+4t2−4t3+5t4−5t5+4t6−3t7+t8 (2v2−v4)+(3v2−4v4+2v6)*z2+(v2−4v4+v6)*z4+(−v4)*z6
10151 10n8 1−4t+10*t2−13t3+10*t4−4t5+t6 1+3z2+2z4+z6 −2t−6+4t−5−6t−4+8t−3−7t−2+7t−1−5+3t−t2 (−v−6+3v−2−1)+(−v−4+6v−2−2)*z2+(−v−4+4v−2−1)*z4+(v−2)*z6
10152 10n36 1−t−t2+4t3−5t4+4t5−t6−t7+t8 1+7z2+13z4+7z6+z8 t4+t6+t7−2t8+2t9−3t10+2t11−2t12+t13 (8v8−10*v10+3v12)+(22v8−17v10+2v12)*z2+(21v8−8v10)*z4+(8v8−v10)*z6+(v8)*z8
10153 10n10 1−t−t2+3t3−t4−t5+t6 1+4z2+5z4+z6 −t−5+t−4−t−3+t−2+1+t−t2+t3−t4 (−v−4−v−2+6−3v2)+(−v−4−v−2+10−4v2)*z2+(6−v2)*z4+(1)*z6
10154 10n7 1−4t2+7t3−4t4+t6 1+5z2+6z4+z6 t3+2t6−2t7+2t8−3t9+2t10−2t11+t12 (4v6−2v8−2v10+v12)+(9v6−2v8−2v10)*z2+(6v6)*z4+(v6)*z6
10155 10n39 1−3t+5t2−7t3+5t4−3t5+t6 1−2z2−3z4−z6 t−6−2t−5+3t−4−4t−3+4t−2−4t−1+4−2t+t2 (2v−4−4v−2+3)+(3v−4−8v−2+3)*z2+(v−4−5v−2+1)*z4+(−v−2)*z6
10156 10n32 1−4t+8t2−9t3+8t4−4t5+t6 1+z2+2z4+z6 −t−6+3t−5−5t−4+6t−3−6t−2+6t−1−4+3t−t2 (−v−4+2v−2)+(−2v−4+5v−2−2)*z2+(−v−4+4v−2−1)*z4+(v−2)*z6
10157 10n42 1−6t+11t2−13t3+11t4−6t5+t6 1+4z2−z6 t−10−4t−9+6t−8−8t−7+9t−6−8t−5+7t−4−4t−3+2t−2 (−v−8+2v−4)+(v−8−2v−6+5v−4)*z2+(v−8−3v−6+2v−4)*z4+(−v−6)*z6
10158 10n41 1−4t+10*t2−15t3+10*t4−4t5+t6 1−3z2−2z4−z6 t−4−3t−3+6t−2−7t−1+8−8t+6t2−4t3+2t4 (2v−2−2+v4)+(2v−2−6+v2)*z2+(v−2−4+v2)*z4+(−1)*z6
10159 10n34 1−4t+9t2−11t3+9t4−4t5+t6 1+2z2+2z4+z6 −1+4t−5t2+7t3−7t4+6t5−5t6+3t7−t8 (v2+v4−v6)+(−v2+5v4−2v6)*z2+(−v2+4v4−v6)*z4+(v4)*z6
10160 10n33 1−4t+4t2−3t3+4t4−4t5+t6 1+3z2−2z4−z6 1−2t+3t2−3t3+4t4−3t5+3t6−2t7 (v2+v6−v8)+(3v2−3v4+3v6)*z2+(v2−4v4+v6)*z4+(−v4)*z6
10161 10n31 1−2t2+3t3−2t4+t6 1+7z2+6z4+z6 t3+t6−t7+t8−t9+t10−t11 (3v6−v8−v10)+(9v6−v8−v10)*z2+(6v6)*z4+(v6)*z6
10162 10n40 3−9t+11t2−9t3+3t4 1−3z2−3z4 t−7−2t−6+4t−5−6t−4+6t−3−6t−2+5t−1−3+2t (v−6−3v−2+3)+(v−6−v−4−5v−2+2)*z2+(−v−4−2v−2)*z4
10163 10n35 1−5t+12t2−15t3+12t4−5t5+t6 1+z2+z4+z6 −t−2+4t−1−6+8t−9t2+9t3−7t4+5t5−2t6 (1−v2+2v4−v6)+(−1+2v2)*z2+(−1+3v2−v4)*z4+(v2)*z6
10164 10n38 3−11t+17t2−11t3+3t4 1+z2+3z4 −t−5+3t−4−5t−3+7t−2−8t−1+8−6t+5t2−2t3 (−v−2+3−v2)+(−v−4+4−2v2)*z2+(v−2+2)*z4
10165 10n37 2−10*t+15t2−10*t3+2t4 1+2z2−2z4 t−9−3t−8+4t−7−6t−6+7t−5−6t−4+6t−3−4t−2+2t−1 (−v−6+v−4+v−2)+(v−8−v−6+2v−2)*z2+(−v−6−v−4)*z4