User:Julio974fr/sandbox/4
Appearance
(Redirected from User:Julio974gaming/Rubik's Nations Cup 2017)
Name | Notation | Number invariants | Symmetry | Hyperbolic | Torus | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A-B | DT | Dowker–Thistlethwaite | Conway | Arf | Cr. | Br. | CC. | St. | UK. | Symmetry type | Grp. | G. | Volume | |
01 | 0a1 | — | — | 0 | 0 | 1 | 0 | 3 | 0 | — | — | 0 | — | (1, 1) |
31 | 3a1 | 4 6 2 | [3] | 1 | 3 | 2 | 1 | 6 | 1 | reversible | Z2 | 1 | — | (2, 3) |
41 | 4a1 | 4 6 8 2 | [22] | 1 | 4 | 2 | 2 | 7 | 1 | fully amphicheiral | D4 | 1 | 2.02988 | — |
51 | 5a2 | 6 8 10 2 4 | [5] | 1 | 5 | 2 | 1 | 8 | 2 | reversible | Z2 | 2 | — | (2, 5) |
52 | 5a1 | 4 8 10 2 6 | [32] | 0 | 5 | 2 | 1 | 8 | 1 | reversible | D2 | 1 | 2.82812 | — |
61 | 6a3 | 4 8 12 10 2 6 | [42] | 0 | 6 | 2 | 1 | 8 | 1 | reversible | D2 | 0 | 3.16396 | — |
62 | 6a2 | 4 8 10 12 2 6 | [312] | 1 | 6 | 2 | 1 | 8 | 1 | reversible | D2 | 1 | 4.40083 | — |
63 | 6a1 | 4 8 10 2 12 6 | [2112] | 1 | 6 | 2 | 2 | 8 | 1 | fully amphicheiral | D4 | 1 | 5.69302 | — |
71 | 7a7 | 8 10 12 14 2 4 6 | [7] | 0 | 7 | 2 | 1 | 9 | 3 | reversible | Z2 | 3 | — | (2, 7) |
72 | 7a4 | 4 10 14 12 2 8 6 | [52] | 1 | 7 | 2 | 1 | 9 | 1 | reversible | D2 | 1 | 3.33174 | — |
73 | 7a5 | 6 10 12 14 2 4 8 | [43] | 1 | 7 | 2 | 1 | 9 | 2 | reversible | D2 | 2 | 4.59213 | — |
74 | 7a6 | 6 10 12 14 4 2 8 | [313] | 0 | 7 | 2 | 1 | 9 | 2 | reversible | D4 | 1 | 5.13794 | — |
75 | 7a3 | 4 10 12 14 2 8 6 | [322] | 0 | 7 | 2 | 2 | 9 | 2 | reversible | D2 | 2 | 6.44354 | — |
76 | 7a2 | 4 8 12 2 14 6 10 | [2212] | 1 | 7 | 2 | 1 | 9 | 1 | reversible | D2 | 1 | 7.08493 | — |
77 | 7a1 | 4 8 10 12 2 14 6 | [21112] | 1 | 7 | 2 | 2 | 9 | 1 | reversible | D4 | 1 | 7.64338 | — |
81 | 8a11 | 4 10 16 14 12 2 8 6 | [62] | 1 | 8 | 2 | 2 | [9,10] | 1 | reversible | D2 | 1 | 3.42721 | — |
82 | 8a8 | 4 10 12 14 16 2 6 8 | [512] | 0 | 8 | 2 | 2 | [9,10] | 2 | reversible | D2 | 2 | 4.93524 | — |
83 | 8a18 | 6 12 10 16 14 4 2 8 | [44] | 0 | 8 | 2 | 1 | [9,10] | 2 | fully amphicheiral | D4 | 1 | 5.23868 | — |
84 | 8a17 | 6 10 12 16 14 4 2 8 | [413] | 1 | 8 | 2 | 1 | [9,10] | 2 | reversible | D2 | 1 | 5.50049 | — |
85 | 8a13 | 6 8 12 2 14 16 4 10 | [3;3;2] | 1 | 8 | 3 | 1 | [9,10] | 2 | reversible | D2 | 2 | 6.99719 | — |
86 | 8a10 | 4 10 14 16 12 2 8 6 | [332] | 0 | 8 | 2 | 1 | [9,10] | 2 | reversible | D2 | 1 | 7.47524 | — |
87 | 8a6 | 4 10 12 14 2 16 6 8 | [4112] | 0 | 8 | 2 | 1 | [9,10] | 1 | reversible | D2 | 1 | 7.0222 | — |
88 | 8a4 | 4 8 12 2 16 14 6 10 | [2312] | 0 | 8 | 2 | 1 | [9,10] | 2 | reversible | D2 | 0 | 7.80134 | — |
89 | 8a16 | 6 10 12 14 16 4 2 8 | [3113] | 0 | 8 | 2 | 1 | [9,10] | 1 | fully amphicheiral | D4 | 0 | 7.58818 | — |
810 | 8a3 | 4 8 12 2 14 16 6 10 | [3;21;2] | 1 | 8 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 8.65115 | — |
811 | 8a9 | 4 10 12 14 16 2 8 6 | [3212] | 1 | 8 | 2 | 1 | [9,10] | 1 | reversible | D2 | 1 | 8.28632 | — |
812 | 8a5 | 4 8 14 10 2 16 6 12 | [2222] | 1 | 8 | 2 | 2 | [9,10] | 2 | fully amphicheiral | D4 | 1 | 8.93586 | — |
813 | 8a7 | 4 10 12 14 2 16 8 6 | [31112] | 1 | 8 | 2 | 2 | [9,10] | 1 | reversible | D2 | 1 | 8.53123 | — |
814 | 8a1 | 4 8 10 14 2 16 6 12 | [22112] | 0 | 8 | 2 | 1 | [9,10] | 1 | reversible | D2 | 1 | 9.2178 | — |
815 | 8a2 | 4 8 12 2 14 6 16 10 | [21;21;2] | 0 | 8 | 3 | 2 | [9,10] | 2 | reversible | D2 | 2 | 9.93065 | — |
816 | 8a15 | 6 8 14 12 4 16 2 10 | [.2.20] | 1 | 8 | 3 | 1 | 9 | 2 | reversible | D1 | 1 | 10.57902 | — |
817 | 8a14 | 6 8 12 14 4 16 2 10 | [.2.2] | 1 | 8 | 3 | 2 | 9 | 1 | negative amphicheiral | D1 | 1 | 10.98591 | — |
818 | 8a12 | 6 8 10 12 14 16 2 4 | [8*] | 1 | 8 | 3 | 3 | 9 | 2 | fully amphicheiral | D8 | 1 | 12.35091 | — |
819 | 8n3 | 4 8 -12 2 -14 -16 -6 -10 | [3;3;2-] | 1 | 8 | 3 | 1 | 8 | 3 | reversible | Z2 | 3 | — | (3, 4) |
820 | 8n1 | 4 8 -12 2 -14 -6 -16 -10 | [3;21;2-] | 0 | 8 | 3 | 1 | 8 | 1 | reversible | D1 | 0 | 4.1249 | — |
821 | 8n2 | 4 8 -12 2 14 -6 16 10 | [21;21;2-] | 0 | 8 | 3 | 2 | 9 | 1 | reversible | D2 | 1 | 6.78371 | — |
91 | 9a41 | 10 12 14 16 18 2 4 6 8 | [9] | 0 | 9 | 2 | 1 | [9,10] | 4 | reversible | Z2 | 4 | — | (2, 9) |
92 | 9a27 | 4 12 18 16 14 2 10 8 6 | [72] | 0 | 9 | 2 | 2 | [9,10] | 1 | reversible | D2 | 1 | 3.48666 | — |
93 | 9a38 | 8 12 14 16 18 2 4 6 10 | [63] | 1 | 9 | 2 | 1 | [9,10] | 3 | reversible | D2 | 3 | 4.99486 | — |
94 | 9a35 | 6 12 14 18 16 2 4 10 8 | [54] | 1 | 9 | 2 | 1 | [9,10] | 2 | reversible | D2 | 2 | 5.55652 | — |
95 | 9a36 | 6 12 14 18 16 4 2 10 8 | [513] | 0 | 9 | 2 | 1 | [9,10] | 2 | reversible | D2 | 1 | 5.69844 | — |
96 | 9a23 | 4 12 14 16 18 2 10 6 8 | [522] | 1 | 9 | 2 | 1 | [9,11] | 3 | reversible | D2 | 3 | 7.2036 | — |
97 | 9a26 | 4 12 16 18 14 2 10 8 6 | [342] | 1 | 9 | 2 | 1 | [9,10] | 2 | reversible | D2 | 2 | 8.01486 | — |
98 | 9a8 | 4 8 14 2 18 16 6 12 10 | [2412] | 0 | 9 | 2 | 1 | [9,10] | 2 | reversible | D2 | 1 | 8.19235 | — |
99 | 9a33 | 6 12 14 16 18 2 4 10 8 | [423] | 0 | 9 | 2 | 1 | [9,10] | 3 | reversible | D2 | 3 | 8.01682 | — |
910 | 9a39 | 8 12 14 16 18 2 6 4 10 | [333] | 0 | 9 | 2 | 2 | [9,10] | 3 | reversible | D4 | 2 | 8.77346 | — |
911 | 9a20 | 4 10 14 16 12 2 18 6 8 | [4122] | 0 | 9 | 2 | 2 | [9,10] | 2 | reversible | D2 | 2 | 8.28859 | — |
912 | 9a22 | 4 10 16 14 2 18 8 6 12 | [4212] | 1 | 9 | 2 | 2 | [9,10] | 1 | reversible | D2 | 1 | 8.83664 | — |
913 | 9a34 | 6 12 14 16 18 4 2 10 8 | [3213] | 1 | 9 | 2 | 1 | [9,10] | 3 | reversible | D2 | 2 | 9.13509 | — |
914 | 9a17 | 4 10 12 16 14 2 18 8 6 | [41112] | 1 | 9 | 2 | 2 | [9,10] | 1 | reversible | D2 | 1 | 8.95499 | — |
915 | 9a10 | 4 8 14 10 2 18 16 6 12 | [2322] | 0 | 9 | 2 | 1 | [9,10] | 2 | reversible | D2 | 1 | 9.8855 | — |
916 | 9a25 | 4 12 16 18 14 2 8 10 6 | [3;3;2+] | 0 | 9 | 3 | 2 | [9,10] | 3 | reversible | D2 | 3 | 9.88301 | — |
917 | 9a14 | 4 10 12 14 16 2 6 18 8 | [21312] | 0 | 9 | 2 | 1 | [9,10] | 2 | reversible | D4 | 1 | 9.47458 | — |
918 | 9a24 | 4 12 14 16 18 2 10 8 6 | [3222] | 0 | 9 | 2 | 2 | [9,10] | 2 | reversible | D2 | 2 | 10.05773 | — |
919 | 9a3 | 4 8 10 14 2 18 16 6 12 | [23112] | 0 | 9 | 2 | 1 | [9,10] | 1 | reversible | D2 | 1 | 10.03255 | — |
920 | 9a19 | 4 10 14 16 2 18 8 6 12 | [31212] | 0 | 9 | 2 | 2 | [9,10] | 2 | reversible | D2 | 2 | 9.6443 | — |
921 | 9a21 | 4 10 14 16 12 2 18 8 6 | [31122] | 1 | 9 | 2 | 1 | [9,10] | 1 | reversible | D2 | 1 | 10.18327 | — |
922 | 9a2 | 4 8 10 14 2 16 18 6 12 | [211;3;2] | 1 | 9 | 3 | 1 | [9,10] | 1 | reversible | D1 | 1 | 10.62073 | — |
923 | 9a16 | 4 10 12 16 2 8 18 6 14 | [22122] | 1 | 9 | 2 | 1 | [9,11] | 2 | reversible | D4 | 2 | 10.61135 | — |
924 | 9a7 | 4 8 14 2 16 18 6 12 10 | [3;21;2+] | 1 | 9 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 10.83373 | — |
925 | 9a4 | 4 8 12 2 16 6 18 10 14 | [22;21;2] | 0 | 9 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 11.39031 | — |
926 | 9a15 | 4 10 12 14 16 2 18 8 6 | [311112] | 0 | 9 | 2 | 1 | [9,10] | 1 | reversible | D2 | 1 | 10.59584 | — |
927 | 9a12 | 4 10 12 14 2 18 16 6 8 | [212112] | 0 | 9 | 2 | 1 | [9,10] | 1 | reversible | D2 | 0 | 10.99998 | — |
928 | 9a5 | 4 8 12 2 16 14 6 18 10 | [21;21;2+] | 1 | 9 | 3 | 1 | [9,10] | 1 | reversible | D2 | 1 | 11.56318 | — |
929 | 9a31 | 6 10 14 18 4 16 8 2 12 | [.2.20.2] | 1 | 9 | 3 | 1 | 9 | 2 | reversible | D1 | 1 | 12.20586 | — |
930 | 9a1 | 4 8 10 14 2 16 6 18 12 | [211;21;2] | 1 | 9 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 11.95453 | — |
931 | 9a13 | 4 10 12 14 2 18 16 8 6 | [2111112] | 0 | 9 | 2 | 1 | [9,10] | 2 | reversible | D4 | 1 | 11.68631 | — |
932 | 9a6 | 4 8 12 14 2 16 18 10 6 | [.21.20] | 1 | 9 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 13.0999 | — |
933 | 9a11 | 4 8 14 12 2 16 18 10 6 | [.21.2] | 1 | 9 | 3 | 2 | [9,10] | 1 | chiral | 1 | 1 | 13.28046 | — |
934 | 9a28 | 6 8 10 16 14 18 4 2 12 | [8*20] | 1 | 9 | 3 | 2 | 9 | 1 | reversible | D1 | 1 | 14.34458 | — |
935 | 9a40 | 8 12 16 14 18 4 2 6 10 | [3;3;3] | 1 | 9 | 3 | 1 | 9 | 3 | reversible | D6 | 1 | 7.94058 | — |
936 | 9a9 | 4 8 14 10 2 16 18 6 12 | [22;3;2] | 1 | 9 | 3 | 1 | [9,11] | 2 | reversible | D1 | 2 | 9.88458 | — |
937 | 9a18 | 4 10 14 12 16 2 6 18 8 | [3;21;21] | 1 | 9 | 3 | 2 | [9,10] | 2 | reversible | D2 | 1 | 10.98945 | — |
938 | 9a30 | 6 10 14 18 4 16 2 8 12 | [.2.2.2] | 0 | 9 | 3 | 2 | [9,10] | 3 | reversible | D1 | 2 | 12.93286 | — |
939 | 9a32 | 6 10 14 18 16 2 8 4 12 | [2:2:20] | 0 | 9 | 3 | 2 | 9 | 1 | reversible | D1 | 1 | 12.81031 | — |
940 | 9a37 | 6 16 14 12 4 2 18 10 8 | [9*] | 1 | 9 | 3 | 2 | 9 | 2 | reversible | D6 | 1 | 15.01834 | — |
941 | 9a29 | 6 10 14 12 16 2 18 4 8 | [20:20:20] | 0 | 9 | 3 | 1 | 9 | 2 | reversible | D3 | 0 | 12.09894 | — |
942 | 9n4 | 4 8 10 -14 2 -16 -18 -6 -12 | [22;3;2-] | 0 | 9 | 3 | 1 | 9 | 1 | reversible | D1 | 1 | 4.05686 | — |
943 | 9n3 | 4 8 10 14 2 -16 6 -18 -12 | [211;3;2-] | 1 | 9 | 3 | 1 | 9 | 2 | reversible | D1 | 2 | 5.90409 | — |
944 | 9n1 | 4 8 10 -14 2 -16 -6 -18 -12 | [22;21;2-] | 0 | 9 | 3 | 1 | 9 | 1 | reversible | D1 | 1 | 7.40677 | — |
945 | 9n2 | 4 8 10 -14 2 16 -6 18 12 | [211;21;2-] | 0 | 9 | 3 | 1 | 9 | 1 | reversible | D1 | 1 | 8.60203 | — |
946 | 9n5 | 4 10 -14 -12 -16 2 -6 -18 -8 | [3;3;21-] | 0 | 9 | 3 | 1 | 9 | 2 | reversible | D2 | 0 | 4.7517 | — |
947 | 9n7 | 6 8 10 16 14 -18 4 2 -12 | [8*-20] | 1 | 9 | 3 | 1 | 9 | 2 | reversible | D3 | 1 | 10.04996 | — |
948 | 9n6 | 4 10 -14 -12 16 2 -6 18 8 | [21;21;21-] | 1 | 9 | 3 | 1 | 9 | 2 | reversible | D6 | 1 | 9.53188 | — |
949 | 9n8 | 6 -10 -14 12 -16 -2 18 -4 -8 | [-20:-20:-20] | 0 | 9 | 3 | 2 | 9 | 3 | reversible | D3 | 2 | 9.42707 | — |
101 | 10a75 | 4 12 20 18 16 14 2 10 8 6 | [82] | 0 | 10 | 2 | 1 | [9,11] | 1 | reversible | D2 | 1 | 3.5262 | — |
102 | 10a59 | 4 12 14 16 18 20 2 6 8 10 | [712] | 0 | 10 | 2 | 2 | [9,11] | 3 | reversible | D2 | 3 | 5.11484 | — |
103 | 10a117 | 6 14 12 20 18 16 4 2 10 8 | [64] | 0 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 0 | 5.7321 | — |
104 | 10a113 | 6 12 14 20 18 16 4 2 10 8 | [613] | 1 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 5.81713 | — |
105 | 10a56 | 4 12 14 16 18 2 20 6 8 10 | [6112] | 0 | 10 | 2 | 2 | [9,11] | 2 | reversible | D2 | 2 | 7.37394 | — |
106 | 10a70 | 4 12 16 18 20 14 2 10 6 8 | [532] | 1 | 10 | 2 | 1 | [9,11] | 3 | reversible | D2 | 2 | 8.39094 | — |
107 | 10a65 | 4 12 14 18 16 20 2 10 8 6 | [5212] | 1 | 10 | 2 | 1 | [9,11] | 1 | reversible | D2 | 1 | 9.11591 | — |
108 | 10a114 | 6 14 12 16 18 20 4 2 8 10 | [514] | 1 | 10 | 2 | 1 | [9,10] | 2 | reversible | D2 | 2 | 6.08323 | — |
109 | 10a110 | 6 12 14 16 18 20 4 2 8 10 | [5113] | 0 | 10 | 2 | 2 | [9,11] | 1 | reversible | D2 | 1 | 8.2941 | — |
1010 | 10a64 | 4 12 14 18 16 2 20 10 8 6 | [51112] | 1 | 10 | 2 | 2 | [9,11] | 1 | reversible | D2 | 1 | 9.18057 | — |
1011 | 10a116 | 6 14 12 18 20 16 4 2 10 8 | [433] | 1 | 10 | 2 | 1 | [9,11] | [2,3] | reversible | D2 | 1 | 9.37044 | — |
1012 | 10a43 | 4 10 14 16 2 20 18 6 8 12 | [4312] | 0 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 9.8175 | — |
1013 | 10a54 | 4 10 18 16 12 2 20 8 6 14 | [4222] | 1 | 10 | 2 | 2 | [9,11] | 2 | reversible | D2 | 1 | 10.57848 | — |
1014 | 10a33 | 4 10 12 16 18 2 20 6 8 14 | [42112] | 0 | 10 | 2 | 2 | [9,11] | 2 | reversible | D2 | 2 | 10.93769 | — |
1015 | 10a68 | 4 12 16 18 14 2 10 20 6 8 | [4132] | 1 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 8.97345 | — |
1016 | 10a115 | 6 14 12 16 18 20 4 2 10 8 | [4123] | 0 | 10 | 2 | 1 | [9,10] | 2 | reversible | D2 | 1 | 9.54664 | — |
1017 | 10a107 | 6 12 14 16 18 2 4 20 8 10 | [4114] | 0 | 10 | 2 | 1 | [9,10] | 1 | fully amphicheiral | D4 | 1 | 8.53676 | — |
1018 | 10a63 | 4 12 14 18 16 2 10 20 8 6 | [41122] | 0 | 10 | 2 | 2 | [9,10] | 1 | reversible | D2 | 1 | 10.63984 | — |
1019 | 10a108 | 6 12 14 16 18 2 4 20 10 8 | [41113] | 1 | 10 | 2 | 2 | [9,11] | 2 | reversible | D2 | 1 | 9.84477 | — |
1020 | 10a74 | 4 12 18 20 16 14 2 10 8 6 | [352] | 1 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 8.31738 | — |
1021 | 10a60 | 4 12 14 16 18 20 2 6 10 8 | [3412] | 1 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 2 | 9.67514 | — |
1022 | 10a112 | 6 12 14 18 20 16 4 2 10 8 | [3313] | 0 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 0 | 9.98187 | — |
1023 | 10a57 | 4 12 14 16 18 2 20 6 10 8 | [33112] | 1 | 10 | 2 | 1 | [9,11] | 1 | reversible | D2 | 1 | 11.39322 | — |
1024 | 10a71 | 4 12 16 18 20 14 2 10 8 6 | [3232] | 0 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 10.97745 | — |
1025 | 10a61 | 4 12 14 16 18 20 2 10 8 6 | [32212] | 0 | 10 | 2 | 2 | [9,11] | 2 | reversible | D2 | 2 | 11.87578 | — |
1026 | 10a111 | 6 12 14 16 18 20 4 2 10 8 | [32113] | 1 | 10 | 2 | 2 | [9,11] | 1 | reversible | D2 | 1 | 11.35202 | — |
1027 | 10a58 | 4 12 14 16 18 2 20 10 8 6 | [321112] | 0 | 10 | 2 | 1 | [9,11] | 1 | reversible | D2 | 1 | 12.38413 | — |
1028 | 10a44 | 4 10 14 16 2 20 18 8 6 12 | [31312] | 1 | 10 | 2 | 2 | [9,11] | 2 | reversible | D2 | 1 | 10.26467 | — |
1029 | 10a53 | 4 10 16 18 12 2 20 8 6 14 | [31222] | 0 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 11.60291 | — |
1030 | 10a34 | 4 10 12 16 18 2 20 8 6 14 | [312112] | 1 | 10 | 2 | 1 | [9,11] | 1 | reversible | D2 | 1 | 11.82876 | — |
1031 | 10a69 | 4 12 16 18 14 2 10 20 8 6 | [31132] | 0 | 10 | 2 | 1 | [9,11] | 1 | reversible | D2 | 1 | 11.04426 | — |
1032 | 10a55 | 4 12 14 16 18 2 10 20 8 6 | [311122] | 1 | 10 | 2 | 2 | [9,11] | 1 | reversible | D2 | 1 | 12.09094 | — |
1033 | 10a109 | 6 12 14 16 18 4 2 20 10 8 | [311113] | 0 | 10 | 2 | 2 | [9,11] | 1 | fully amphicheiral | D4 | 1 | 11.53567 | — |
1034 | 10a19 | 4 8 14 2 20 18 16 6 12 10 | [2512] | 1 | 10 | 2 | 2 | [9,11] | 2 | reversible | D2 | 1 | 8.42227 | — |
1035 | 10a23 | 4 8 16 10 2 20 18 6 14 12 | [2422] | 0 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 0 | 10.3945 | — |
1036 | 10a5 | 4 8 10 16 2 20 18 6 14 12 | [24112] | 1 | 10 | 2 | 2 | [9,11] | 2 | reversible | D2 | 1 | 10.47619 | — |
1037 | 10a49 | 4 10 16 12 2 8 20 18 6 14 | [2332] | 1 | 10 | 2 | 2 | [9,12] | 2 | fully amphicheiral | D4 | 1 | 10.96581 | — |
1038 | 10a29 | 4 10 12 16 2 8 20 18 6 14 | [23122] | 1 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 11.34931 | — |
1039 | 10a26 | 4 10 12 14 18 2 6 20 8 16 | [22312] | 1 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 2 | 11.58952 | — |
1040 | 10a30 | 4 10 12 16 2 20 6 18 8 14 | [222112] | 1 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 12.88874 | — |
1041 | 10a35 | 4 10 12 16 20 2 8 18 6 14 | [221212] | 0 | 10 | 2 | 1 | [9,11] | 2 | reversible | D2 | 1 | 12.37662 | — |
1042 | 10a31 | 4 10 12 16 2 20 8 18 6 14 | [2211112] | 0 | 10 | 2 | 1 | [9,11] | 1 | reversible | D2 | 0 | 13.23985 | — |
1043 | 10a52 | 4 10 16 14 2 20 8 18 6 12 | [212212] | 0 | 10 | 2 | 1 | [9,11] | 2 | fully amphicheiral | D4 | 1 | 12.6026 | — |
1044 | 10a32 | 4 10 12 16 14 2 20 18 8 6 | [2121112] | 0 | 10 | 2 | 1 | [9,11] | 1 | reversible | D2 | 1 | 12.96899 | — |
1045 | 10a25 | 4 10 12 14 16 2 20 18 8 6 | [21111112] | 0 | 10 | 2 | 1 | [9,11] | 2 | fully amphicheiral | D4 | 1 | 13.71608 | — |
1046 | 10a81 | 6 8 14 2 16 18 20 4 10 12 | [5;3;2] | 0 | 10 | 3 | 2 | [9,11] | 3 | reversible | D1 | 3 | 7.717 | — |
1047 | 10a15 | 4 8 14 2 16 18 20 6 10 12 | [5;21;2] | 0 | 10 | 3 | 2 | [9,11] | [2,3] | reversible | D1 | 2 | 9.38519 | — |
1048 | 10a79 | 6 8 14 2 16 18 4 20 10 12 | [41;3;2] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 0 | 10.3789 | — |
1049 | 10a13 | 4 8 14 2 16 18 6 20 10 12 | [41;21;2] | 1 | 10 | 3 | 1 | [9,11] | 3 | reversible | D1 | 3 | 11.45319 | — |
1050 | 10a82 | 6 8 14 2 16 18 20 4 12 10 | [32;3;2] | 1 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 2 | 11.19889 | — |
1051 | 10a16 | 4 8 14 2 16 18 20 6 12 10 | [32;21;2] | 1 | 10 | 3 | 1 | [9,11] | [2,3] | reversible | D1 | 1 | 12.63138 | — |
1052 | 10a80 | 6 8 14 2 16 18 4 20 12 10 | [311;3;2] | 1 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 1 | 11.53755 | — |
1053 | 10a14 | 4 8 14 2 16 18 6 20 12 10 | [311;21;2] | 0 | 10 | 3 | 2 | [9,11] | 3 | reversible | D1 | 2 | 12.88685 | — |
1054 | 10a48 | 4 10 16 12 2 8 18 20 6 14 | [23;3;2] | 0 | 10 | 3 | 1 | [9,11] | [2,3] | reversible | D1 | 1 | 10.59131 | — |
1055 | 10a9 | 4 8 12 2 16 6 20 18 10 14 | [23;21;2] | 1 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 2 | 12.18554 | — |
1056 | 10a28 | 4 10 12 16 2 8 18 20 6 14 | [221;3;2] | 0 | 10 | 3 | 2 | [9,10] | 2 | reversible | D1 | 2 | 12.3988 | — |
1057 | 10a6 | 4 8 12 2 14 18 6 20 10 16 | [221;21;2] | 0 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 1 | 13.58856 | — |
1058 | 10a20 | 4 8 14 10 2 18 6 20 12 16 | [22;22;2] | 0 | 10 | 3 | 2 | [9,11] | 2 | reversible | D2 | 1 | 12.72133 | — |
1059 | 10a2 | 4 8 10 14 2 18 6 20 12 16 | [22;211;2] | 1 | 10 | 3 | 1 | [9,11] | 1 | reversible | D1 | 1 | 13.38994 | — |
1060 | 10a1 | 4 8 10 14 2 16 18 6 20 12 | [211;211;2] | 1 | 10 | 3 | 2 | [9,11] | 1 | reversible | D2 | 1 | 13.98004 | — |
1061 | 10a123 | 8 10 16 14 2 18 20 6 4 12 | [4;3;3] | 0 | 10 | 3 | 2 | [9,11] | [2,3] | reversible | D2 | 2 | 8.45858 | — |
1062 | 10a41 | 4 10 14 16 2 18 20 6 8 12 | [4;3;21] | 1 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 2 | 10.14147 | — |
1063 | 10a51 | 4 10 16 14 2 18 8 6 20 12 | [4;21;21] | 0 | 10 | 3 | 2 | [9,11] | 2 | reversible | D2 | 2 | 11.51169 | — |
1064 | 10a122 | 8 10 14 16 2 18 20 6 4 12 | [31;3;3] | 1 | 10 | 3 | 1 | [9,11] | 2 | reversible | D2 | 1 | 10.86809 | — |
1065 | 10a42 | 4 10 14 16 2 18 20 8 6 12 | [31;3;21] | 0 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 1 | 12.07646 | — |
1066 | 10a40 | 4 10 14 16 2 18 8 6 20 12 | [31;21;21] | 1 | 10 | 3 | 1 | [9,11] | 3 | reversible | D2 | 3 | 13.02927 | — |
1067 | 10a37 | 4 10 14 12 18 2 6 20 8 16 | [22;3;21] | 0 | 10 | 3 | 1 | [9,11] | 2 | chiral | Z2 | 1 | 12.42163 | — |
1068 | 10a67 | 4 12 16 14 18 2 20 6 10 8 | [211;3;3] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D2 | 1 | 11.63704 | — |
1069 | 10a38 | 4 10 14 12 18 2 16 6 20 8 | [211;21;21] | 0 | 10 | 3 | 1 | [9,11] | 2 | reversible | D2 | 1 | 14.12651 | — |
1070 | 10a22 | 4 8 16 10 2 18 20 6 14 12 | [22;3;2+] | 1 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 1 | 12.51089 | — |
1071 | 10a10 | 4 8 12 2 18 14 6 20 10 16 | [22;21;2+] | 1 | 10 | 3 | 2 | [9,11] | 1 | reversible | D1 | 1 | 13.38523 | — |
1072 | 10a4 | 4 8 10 16 2 18 20 6 14 12 | [211;3;2+] | 0 | 10 | 3 | 2 | [9,11] | 2 | reversible | D1 | 2 | 12.92959 | — |
1073 | 10a3 | 4 8 10 14 2 18 16 6 20 12 | [211;21;2+] | 1 | 10 | 3 | 1 | [9,11] | 1 | reversible | D1 | 1 | 13.70688 | — |
1074 | 10a62 | 4 12 14 16 20 18 2 8 6 10 | [3;3;21+] | 0 | 10 | 3 | 1 | [9,11] | 2 | reversible | D2 | 1 | 12.00604 | — |
1075 | 10a27 | 4 10 12 14 18 2 16 6 20 8 | [21;21;21+] | 0 | 10 | 3 | 1 | [9,11] | 2 | reversible | D6 | 0 | 13.43075 | — |
1076 | 10a73 | 4 12 18 20 14 16 2 10 8 6 | [3;3;2++] | 0 | 10 | 3 | 2 | [9,12] | [2,3] | reversible | D2 | 2 | 11.51286 | — |
1077 | 10a18 | 4 8 14 2 18 20 16 6 12 10 | [3;21;2++] | 0 | 10 | 3 | 1 | [9,11] | [2,3] | reversible | D1 | 1 | 12.07471 | — |
1078 | 10a17 | 4 8 14 2 18 16 6 12 20 10 | [21;21;2++] | 1 | 10 | 3 | 1 | [9,11] | 2 | reversible | D2 | 2 | 12.5021 | — |
1079 | 10a78 | 6 8 12 2 16 4 18 20 10 14 | [(3;2)(3;2)] | 1 | 10 | 3 | 2 | [9,11] | [2,3] | negative amphicheiral | D1 | 1 | 12.5403 | — |
1080 | 10a8 | 4 8 12 2 16 6 18 20 10 14 | [(3;2)(21;2)] | 0 | 10 | 3 | 1 | [9,11] | 3 | chiral | 1 | 3 | 13.39404 | — |
1081 | 10a7 | 4 8 12 2 16 6 18 10 20 14 | [(21;2)(21;2)] | 1 | 10 | 3 | 2 | [9,11] | 2 | negative amphicheiral | D1 | 1 | 14.49267 | — |
1082 | 10a83 | 6 8 14 16 4 18 20 2 10 12 | [.4.2] | 0 | 10 | 3 | 1 | [9,10] | 1 | chiral | 1 | 1 | 12.43148 | — |
1083 | 10a87 | 6 8 16 14 4 18 20 2 12 10 | [.31.20] | 1 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 14.25805 | — |
1084 | 10a50 | 4 10 16 14 2 8 18 20 12 6 | [.22.2] | 0 | 10 | 3 | 2 | [9,10] | 1 | chiral | 1 | 1 | 14.7099 | — |
1085 | 10a86 | 6 8 16 14 4 18 20 2 10 12 | [.4.20] | 0 | 10 | 3 | 2 | [9,10] | 2 | chiral | 1 | 2 | 11.79777 | — |
1086 | 10a84 | 6 8 14 16 4 18 20 2 12 10 | [.31.2] | 1 | 10 | 3 | 2 | [9,11] | 2 | chiral | 1 | 1 | 14.34126 | — |
1087 | 10a39 | 4 10 14 16 2 8 18 20 12 6 | [.22.20] | 0 | 10 | 3 | 1 | [9,11] | 2 | chiral | 1 | 0 | 14.27364 | — |
1088 | 10a11 | 4 8 12 14 2 16 20 18 10 6 | [.21.21] | 1 | 10 | 3 | 2 | [9,11] | 1 | negative amphicheiral | D1 | 1 | 15.64665 | — |
1089 | 10a21 | 4 8 14 12 2 16 20 18 10 6 | [.21.210] | 1 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 1 | 15.56606 | — |
1090 | 10a92 | 6 10 14 2 16 20 18 8 4 12 | [.3.2.2] | 1 | 10 | 3 | 2 | [9,10] | 2 | chiral | 1 | 1 | 13.86615 | — |
1091 | 10a106 | 6 10 20 14 16 18 4 8 2 12 | [.3.2.20] | 0 | 10 | 3 | 1 | [9,10] | 1 | chiral | 1 | 1 | 13.48702 | — |
1092 | 10a46 | 4 10 14 18 2 16 8 20 12 6 | [.21.2.20] | 0 | 10 | 3 | 2 | [9,11] | 2 | chiral | 1 | 2 | 14.85535 | — |
1093 | 10a101 | 6 10 16 20 14 4 18 2 12 8 | [.3.20.2] | 1 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 13.01647 | — |
1094 | 10a91 | 6 10 14 2 16 18 20 8 4 12 | [.30.2.2] | 0 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 13.31157 | — |
1095 | 10a47 | 4 10 14 18 2 16 20 8 12 6 | [.210.2.2] | 1 | 10 | 3 | 2 | [9,11] | 1 | chiral | 1 | 1 | 15.04785 | — |
1096 | 10a24 | 4 8 18 12 2 16 20 6 10 14 | [.2.21.2] | 1 | 10 | 3 | 2 | [9,11] | 2 | reversible | D1 | 1 | 15.17785 | — |
1097 | 10a12 | 4 8 12 18 2 16 20 6 10 14 | [.2.210.2] | 0 | 10 | 3 | 1 | [9,11] | 2 | reversible | D1 | 1 | 14.85275 | — |
1098 | 10a96 | 6 10 14 18 2 16 20 4 8 12 | [.2.2.2.20] | 0 | 10 | 3 | 2 | [9,11] | 2 | chiral | Z2 | 2 | 14.41292 | — |
1099 | 10a103 | 6 10 18 14 2 16 20 8 4 12 | [.2.2.20.20] | 0 | 10 | 3 | 1 | [9,11] | 2 | fully amphicheiral | D2 | 0 | 14.33434 | — |
10100 | 10a104 | 6 10 18 14 16 4 20 8 2 12 | [3:2:2] | 0 | 10 | 3 | 2 | [9,10] | [2,3] | reversible | D1 | 2 | 12.81088 | — |
10101 | 10a45 | 4 10 14 18 2 16 6 20 8 12 | [21:2:2] | 1 | 10 | 3 | 1 | [9,11] | 3 | reversible | D1 | 2 | 14.68751 | — |
10102 | 10a97 | 6 10 14 18 16 4 20 2 8 12 | [3:2:20] | 0 | 10 | 3 | 1 | [9,10] | 1 | chiral | 1 | 1 | 13.72734 | — |
10103 | 10a105 | 6 10 18 16 14 4 20 8 2 12 | [30:2:2] | 1 | 10 | 3 | 1 | [9,10] | 3 | reversible | D1 | 1 | 13.87479 | — |
10104 | 10a118 | 6 16 12 14 18 4 20 2 8 10 | [3:20:20] | 1 | 10 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 14.10713 | — |
10105 | 10a72 | 4 12 16 20 18 2 8 6 10 14 | [21:20:20] | 1 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 15.1817 | — |
10106 | 10a95 | 6 10 14 16 18 4 20 2 8 12 | [30:2:20] | 1 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 13.93302 | — |
10107 | 10a66 | 4 12 16 14 18 2 8 20 10 6 | [210:2:20] | 1 | 10 | 3 | 2 | [9,10] | 1 | chiral | 1 | 1 | 15.35285 | — |
10108 | 10a119 | 6 16 12 14 18 4 20 2 10 8 | [30:20:20] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 12.90462 | — |
10109 | 10a93 | 6 10 14 16 2 18 4 20 8 12 | [2.2.2.2] | 1 | 10 | 3 | 2 | [9,10] | 2 | negative amphicheiral | D1 | 1 | 14.90021 | — |
10110 | 10a100 | 6 10 16 20 14 2 18 4 8 12 | [2.2.2.20] | 1 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 14.77746 | — |
10111 | 10a98 | 6 10 16 14 2 18 8 20 4 12 | [2.2.20.2] | 1 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 2 | 14.26502 | — |
10112 | 10a76 | 6 8 10 14 16 18 20 2 4 12 | [8*3] | 0 | 10 | 3 | 2 | [9,10] | 2 | reversible | D1 | 1 | 14.75588 | — |
10113 | 10a36 | 4 10 14 12 2 16 18 20 8 6 | [8*21] | 0 | 10 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 16.47347 | — |
10114 | 10a77 | 6 8 10 14 16 20 18 2 4 12 | [8*30] | 1 | 10 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 15.3049 | — |
10115 | 10a94 | 6 10 14 16 4 18 2 20 12 8 | [8*20.20] | 1 | 10 | 3 | 2 | [9,10] | 2 | negative amphicheiral | D1 | 1 | 16.63804 | — |
10116 | 10a120 | 6 16 18 14 2 4 20 8 10 12 | [8*2:2] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 15.42387 | — |
10117 | 10a99 | 6 10 16 14 18 4 20 2 12 8 | [8*2:20] | 0 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 16.12544 | — |
10118 | 10a88 | 6 8 18 14 16 4 20 2 10 12 | [8*2:.2] | 0 | 10 | 3 | 1 | [9,10] | 1 | negative amphicheiral | D1 | 1 | 15.54521 | — |
10119 | 10a85 | 6 8 14 18 16 4 20 10 2 12 | [8*2:.20] | 1 | 10 | 3 | 2 | [9,10] | 1 | chiral | 1 | 1 | 15.93869 | — |
10120 | 10a102 | 6 10 18 12 4 16 20 8 2 14 | [8*20::20] | 0 | 10 | 3 | 2 | [9,10] | 3 | reversible | D2 | 2 | 16.27137 | — |
10121 | 10a90 | 6 10 12 20 18 16 8 2 4 14 | [9*20] | 1 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 16.97488 | — |
10122 | 10a89 | 6 10 12 14 18 16 20 2 4 8 | [9*.20] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D2 | 1 | 16.41082 | — |
10123 | 10a121 | 8 10 12 14 16 18 20 2 4 6 | [10*] | 0 | 10 | 3 | 1 | [9,11] | 2 | fully amphicheiral | D10 | 0 | 17.08571 | — |
10124 | 10n21 | 4 8 -14 2 -16 -18 -20 -6 -10 -12 | [5;3;2-] | 0 | 10 | 3 | 1 | 10 | 4 | reversible | Z2 | 4 | — | (3, 5) |
10125 | 10n15 | 4 8 14 2 -16 -18 6 -20 -10 -12 | [5;21;2-] | 1 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 4.61196 | — |
10126 | 10n17 | 4 8 -14 2 -16 -18 -6 -20 -10 -12 | [41;3;2-] | 1 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 6.90426 | — |
10127 | 10n16 | 4 8 -14 2 16 18 -6 20 10 12 | [41;21;2-] | 1 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 2 | 8.89682 | — |
10128 | 10n22 | 4 8 -14 2 -16 -18 -20 -6 -12 -10 | [32;3;2-] | 1 | 10 | 3 | 1 | [9,10] | 3 | reversible | D1 | 3 | 5.86054 | — |
10129 | 10n18 | 4 8 14 2 -16 -18 6 -20 -12 -10 | [32;21;2-] | 0 | 10 | 3 | 1 | [9,10] | 1 | reversible | D1 | 0 | 8.90152 | — |
10130 | 10n20 | 4 8 -14 2 -16 -18 -6 -20 -12 -10 | [311;3;2-] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 6.7782 | — |
10131 | 10n19 | 4 8 -14 2 16 18 -6 20 12 10 | [311;21;2-] | 0 | 10 | 3 | 1 | [9,10] | 1 | reversible | D1 | 1 | 9.46502 | — |
10132 | 10n13 | 4 8 -12 2 -16 -6 -20 -18 -10 -14 | [23;3;2-] | 1 | 10 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 4.05686 | — |
10133 | 10n4 | 4 8 12 2 -14 -18 6 -20 -10 -16 | [23;21;2-] | 1 | 10 | 3 | 1 | [9,10] | 1 | reversible | D1 | 1 | 7.7983 | — |
10134 | 10n6 | 4 8 -12 2 -14 -18 -6 -20 -10 -16 | [221;3;2-] | 0 | 10 | 3 | 1 | [9,10] | 3 | reversible | D1 | 3 | 8.39292 | — |
10135 | 10n5 | 4 8 -12 2 14 18 -6 20 10 16 | [221;21;2-] | 1 | 10 | 3 | 2 | [9,10] | 2 | reversible | D1 | 1 | 10.68717 | — |
10136 | 10n3 | 4 8 10 -14 2 -18 -6 -20 -12 -16 | [22;22;2-] | 0 | 10 | 3 | 2 | [9,10] | 1 | reversible | D2 | 1 | 7.74627 | — |
10137 | 10n2 | 4 8 10 -14 2 -16 -18 -6 -20 -12 | [22;211;2-] | 0 | 10 | 3 | 1 | [9,10] | 1 | reversible | D1 | 0 | 9.25056 | — |
10138 | 10n1 | 4 8 10 -14 2 16 18 -6 20 12 | [211;211;2-] | 1 | 10 | 3 | 2 | [9,10] | 2 | reversible | D2 | 1 | 10.46725 | — |
10139 | 10n27 | 4 10 -14 -16 2 -18 -20 -6 -8 -12 | [4;3;3-] | 1 | 10 | 3 | 1 | [9,10] | 4 | reversible | D2 | 4 | 4.85117 | — |
10140 | 10n29 | 4 10 -14 -16 2 18 20 -8 -6 12 | [4;3;21-] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 0 | 5.21257 | — |
10141 | 10n25 | 4 10 -14 -16 2 18 -8 -6 20 12 | [4;21;21-] | 1 | 10 | 3 | 2 | [9,10] | 1 | reversible | D2 | 1 | 7.93647 | — |
10142 | 10n30 | 4 10 -14 -16 2 -18 -20 -8 -6 -12 | [31;3;3-] | 0 | 10 | 3 | 1 | [9,10] | 3 | reversible | D2 | 3 | 6.77082 | — |
10143 | 10n26 | 4 10 -14 -16 2 -18 -8 -6 -20 -12 | [31;3;21-] | 1 | 10 | 3 | 1 | [9,10] | 1 | reversible | D1 | 1 | 9.0709 | — |
10144 | 10n28 | 4 10 14 16 2 -18 -20 8 6 -12 | [31;21;21-] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D2 | 1 | 10.79659 | — |
10145 | 10n14 | 4 8 -12 -18 2 -16 -20 -6 -10 -14 | [22;3;3-] | 1 | 10 | 3 | 1 | [9,10] | 2 | reversible | D2 | 2 | 5.0449 | — |
10146 | 10n23 | 4 8 -18 -12 2 -16 -20 -6 -10 -14 | [22;21;21-] | 0 | 10 | 3 | 1 | [9,10] | 1 | reversible | D2 | 1 | 10.56102 | — |
10147 | 10n24 | 4 10 -14 12 2 16 18 -20 8 -6 | [211;3;21-] | 1 | 10 | 3 | 1 | [9,10] | 1 | chiral | Z2 | 1 | 9.41759 | — |
10148 | 10n12 | 4 8 -12 2 -16 -6 -18 -20 -10 -14 | [(3;2)(3;2-)] | 0 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 10.26024 | — |
10149 | 10n11 | 4 8 -12 2 16 -6 18 20 10 14 | [(3;2)(21;2-)] | 0 | 10 | 3 | 2 | [9,10] | 2 | chiral | 1 | 2 | 11.44273 | — |
10150 | 10n9 | 4 8 -12 2 -16 -6 -18 -10 -20 -14 | [(21;2)(3;2-)] | 1 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 2 | 10.08136 | — |
10151 | 10n8 | 4 8 -12 2 16 -6 18 10 20 14 | [(21;2)(21;2-)] | 1 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 1 | 11.84304 | — |
10152 | 10n36 | 6 8 12 2 -16 4 -18 -20 -10 -14 | [(3;2)-(3;2)] | 1 | 10 | 3 | 1 | [9,10] | 4 | reversible | D1 | 4 | 8.53607 | — |
10153 | 10n10 | 4 8 12 2 -16 6 -18 -20 -10 -14 | [(3;2)-(21;2)] | 0 | 10 | 3 | 1 | [9,10] | 2 | chiral | 1 | 0 | 7.37434 | — |
10154 | 10n7 | 4 8 12 2 -16 6 -18 -10 -20 -14 | [(21;2)-(21;2)] | 1 | 10 | 3 | 1 | [9,11] | 3 | reversible | D1 | 3 | 9.24989 | — |
10155 | 10n39 | 6 10 14 16 18 4 -20 2 8 -12 | [-3:2:2] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D2 | 0 | 9.25054 | — |
10156 | 10n32 | 4 12 16 -14 18 2 -8 20 10 6 | [-3:2:20] | 1 | 10 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 11.16339 | — |
10157 | 10n42 | 6 -10 -18 14 -2 -16 20 8 -4 12 | [-3:20:20] | 0 | 10 | 3 | 2 | [9,10] | 2 | reversible | D4 | 2 | 12.66533 | — |
10158 | 10n41 | 6 -10 -16 14 -2 -18 8 20 -4 -12 | [-30:2:2] | 1 | 10 | 3 | 2 | [9,10] | 2 | reversible | D1 | 1 | 12.27124 | — |
10159 | 10n34 | 6 8 10 14 16 -18 -20 2 4 -12 | [-30:2:20] | 0 | 10 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 11.74064 | — |
10160 | 10n33 | 4 12 -16 -14 -18 2 -8 -20 -10 -6 | [-30:20:20] | 1 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 2 | 9.20392 | — |
10161 | 10n31 | 4 12 -16 14 -18 2 8 -20 -10 -6 | [3:-20:-20] | 1 | 10 | 3 | 1 | [9,10] | 3 | reversible | D1 | 3 | 5.63877 | — |
10162 | 10n40 | 6 10 14 18 16 4 -20 2 8 -12 | [-30:-20:-20] | 1 | 10 | 3 | 2 | [9,10] | 2 | reversible | D1 | 1 | 10.69336 | — |
10163 | 10n35 | 6 8 10 14 16 -20 -18 2 4 -12 | [8*-30] | 1 | 10 | 3 | 2 | [9,10] | 2 | reversible | D1 | 1 | 13.29 | — |
10164 | 10n38 | 6 -10 -12 14 -18 -16 20 -2 -4 -8 | [8*2:-20] | 1 | 10 | 3 | 2 | [9,10] | 1 | reversible | D1 | 1 | 12.50669 | — |
10165 | 10n37 | 6 8 14 18 16 4 -20 10 2 -12 | [8*2:.-20] | 0 | 10 | 3 | 1 | [9,10] | 2 | reversible | D1 | 1 | 11.60308 | — |
A-B | DT | Alexander | Conway | Jones | HOMFLY-PT |
---|---|---|---|---|---|
01 | 0a1 | 1 | 1 | 1 | |
31 | 3a1 | 1−t+t2 | 1+z2 | t+t3−t4 | (2v2−v4)+(v2)*z2 |
41 | 4a1 | 1−3t+t2 | 1−z2 | t−2−t−1+1−t+t2 | (v−2−1+v2)+(−1)*z2 |
51 | 5a2 | 1−t+t2−t3+t4 | 1+3z2+z4 | t2+t4−t5+t6−t7 | (3v4−2v6)+(4v4−v6)*z2+(v4)*z4 |
52 | 5a1 | 2−3t+2t2 | 1+2z2 | t−t2+2t3−t4+t5−t6 | (v2+v4−v6)+(v2+v4)*z2 |
61 | 6a3 | 2−5t+2t2 | 1−2z2 | t−2−t−1+2−2t+t2−t3+t4 | (v−2−v2+v4)+(−1−v2)*z2 |
62 | 6a2 | 1−3t+3t2−3t3+t4 | 1−z2−z4 | t−1−1+2t−2t2+2t3−2t4+t5 | (2−2v2+v4)+(1−3v2+v4)*z2+(−v2)*z4 |
63 | 6a1 | 1−3t+5t2−3t3+t4 | 1+z2+z4 | −t−3+2t−2−2t−1+3−2t+2t2−t3 | (−v−2+3−v2)+(−v−2+3−v2)*z2+(1)*z4 |
71 | 7a7 | 1−t+t2−t3+t4−t5+t6 | 1+6z2+5z4+z6 | t3+t5−t6+t7−t8+t9−t10 | (4v6−3v8)+(10*v6−4v8)*z2+(6v6−v8)*z4+(v6)*z6 |
72 | 7a4 | 3−5t+3t2 | 1+3z2 | t−t2+2t3−2t4+2t5−t6+t7−t8 | (v2+v6−v8)+(v2+v4+v6)*z2 |
73 | 7a5 | 2−3t+3t2−3t3+2t4 | 1+5z2+2z4 | t2−t3+2t4−2t5+3t6−2t7+t8−t9 | (v4+2v6−2v8)+(3v4+3v6−v8)*z2+(v4+v6)*z4 |
74 | 7a6 | 4−7t+4t2 | 1+4z2 | t−2t2+3t3−2t4+3t5−2t6+t7−t8 | (2v4−v8)+(v2+2v4+v6)*z2 |
75 | 7a3 | 2−4t+5t2−4t3+2t4 | 1+4z2+2z4 | t2−t3+3t4−3t5+3t6−3t7+2t8−t9 | (2v4−v8)+(3v4+2v6−v8)*z2+(v4+v6)*z4 |
76 | 7a2 | 1−5t+7t2−5t3+t4 | 1+z2−z4 | t−1−2+3t−3t2+4t3−3t4+2t5−t6 | (1−v2+2v4−v6)+(1−2v2+2v4)*z2+(−v2)*z4 |
77 | 7a1 | 1−5t+9t2−5t3+t4 | 1−z2+z4 | t−4−2t−3+3t−2−4t−1+4−3t+3t2−t3 | (v−4−2v−2+2)+(−2v−2+2−v2)*z2+(1)*z4 |
81 | 8a11 | 3−7t+3t2 | 1−3z2 | t−2−t−1+2−2t+2t2−2t3+t4−t5+t6 | (v−2−v4+v6)+(−1−v2−v4)*z2 |
82 | 8a8 | 1−3t+3t2−3t3+3t4−3t5+t6 | 1−3z4−z6 | 1−t+2t2−2t3+3t4−3t5+2t6−2t7+t8 | (3v2−3v4+v6)+(4v2−7v4+3v6)*z2+(v2−5v4+v6)*z4+(−v4)*z6 |
83 | 8a18 | 4−9t+4t2 | 1−4z2 | t−4−t−3+2t−2−3t−1+3−3t+2t2−t3+t4 | (v−4−1+v4)+(−v−2−2−v2)*z2 |
84 | 8a17 | 2−5t+5t2−5t3+2t4 | 1−3z2−2z4 | t−5−2t−4+3t−3−3t−2+3t−1−3+2t1−t2+t3 | (v−4−2+2v2)+(v−4−2v−2−3+v2)*z2+(−v−2−1)*z4 |
85 | 8a13 | 1−3t+4t2−5t3+4t4−3t5+t6 | 1−z2−3z4−z6 | 1−t+3t2−3t3+3t4−4t5+3t6−2t7+t8 | (4v2−5v4+2v6)+(4v2−8v4+3v6)*z2+(v2−5v4+v6)*z4+(−v4)*z6 |
86 | 8a10 | 2−6t+7t2−6t3+2t4 | 1−2z2−2z4 | t−1−1+3t−4t2+4t3−4t4+3t5−2t6+t7 | (2−v2−v4+v6)+(1−2v2−2v4+v6)*z2+(−v2−v4)*z4 |
87 | 8a6 | 1−3t+5t2−5t3+5t4−3t5+t6 | 1+2z2+3z4+z6 | −t−6+2t−5−3t−4+4t−3−4t−2+4t−1−2+2t−t2 | (−2v−4+4v−2−1)+(−3v−4+8v−2−3)*z2+(−v−4+5v−2−1)*z4+(v−2)*z6 |
88 | 8a4 | 2−6t+9t2−6t3+2t4 | 1+2z2+2z4 | −t−5+2t−4−3t−3+4t−2−4t−1+5−3t+2t2−t3 | (−v−4+v−2+2−v2)+(−v−4+2v−2+2−v2)*z2+(v−2+1)*z4 |
89 | 8a16 | 1−3t+5t2−7t3+5t4−3t5+t6 | 1−2z2−3z4−z6 | t−4−2t−3+3t−2−4t−1+5−4t+3t2−2t3+t4 | (2v−2−3+2v2)+(3v−2−8+3v2)*z2+(v−2−5+v2)*z4+(−1)*z6 |
810 | 8a3 | 1−3t+6t2−7t3+6t4−3t5+t6 | 1+3z2+3z4+z6 | −t−6+2t−5−4t−4+5t−3−4t−2+5t−1−3+2t−t2 | (−3v−4+6v−2−2)+(−3v−4+9v−2−3)*z2+(−v−4+5v−2−1)*z4+(v−2)*z6 |
811 | 8a9 | 2−7t+9t2−7t3+2t4 | 1−z2−2z4 | t−1−2+4t−4t2+5t3−5t4+3t5−2t6+t7 | (1+v2−2v4+v6)+(1−v2−2v4+v6)*z2+(−v2−v4)*z4 |
812 | 8a5 | 1−7t+13t2−7t3+t4 | 1−3z2+z4 | t−4−2t−3+4t−2−5t−1+5−5t+4t2−2t3+t4 | (v−4−v−2+1−v2+v4)+(−2v−2+1−2v2)*z2+(1)*z4 |
813 | 8a7 | 2−7t+11t2−7t3+2t4 | 1+z2+2z4 | −t−5+2t−4−3t−3+5t−2−5t−1+5−4t+3t2−t3 | (−v−4+2v−2)+(−v−4+2v−2+1−v2)*z2+(v−2+1)*z4 |
814 | 8a1 | 2−8t+11t2−8t3+2t4 | 1−2z4 | t−1−2+4t−5t2+6t3−5t4+4t5−3t6+t7 | (1)+(1−v2−v4+v6)*z2+(−v2−v4)*z4 |
815 | 8a2 | 3−8t+11t2−8t3+3t4 | 1+4z2+3z4 | t2−2t3+5t4−5t5+6t6−6t7+4t8−3t9+t10 | (v4+3v6−4v8+v10)+(2v4+5v6−3v8)*z2+(v4+2v6)*z4 |
816 | 8a15 | 1−4t+8t2−9t3+8t4−4t5+t6 | 1+z2+2z4+z6 | −t−6+3t−5−5t−4+6t−3−6t−2+6t−1−4+3t−t2 | (−v−4+2v−2)+(−2v−4+5v−2−2)*z2+(−v−4+4v−2−1)*z4+(v−2)*z6 |
817 | 8a14 | 1−4t+8t2−11t3+8t4−4t5+t6 | 1−z2−2z4−z6 | t−4−3t−3+5t−2−6t−1+7−6t+5t2−3t3+t4 | (v−2−1+v2)+(2v−2−5+2v2)*z2+(v−2−4+v2)*z4+(−1)*z6 |
818 | 8a12 | 1−5t+10*t2−13t3+10*t4−5t5+t6 | 1+z2−z4−z6 | t−4−4t−3+6t−2−7t−1+9−7t+6t2−4t3+t4 | (−v−2+3−v2)+(v−2−1+v2)*z2+(v−2−3+v2)*z4+(−1)*z6 |
819 | 8n3 | 1−t+t3−t5+t6 | 1+5z2+5z4+z6 | t3+t5−t8 | (5v6−5v8+v10)+(10*v6−5v8)*z2+(6v6−v8)*z4+(v6)*z6 |
820 | 8n1 | 1−2t+3t2−2t3+t4 | 1+2z2+z4 | −t−5+t−4−t−3+2t−2−t−1+2−t | (−2v−4+4v−2−1)+(−v−4+4v−2−1)*z2+(v−2)*z4 |
821 | 8n2 | 1−4t+5t2−4t3+t4 | 1−z4 | 2t−2t2+3t3−3t4+2t5−2t6+t7 | (3v2−3v4+v6)+(2v2−3v4+v6)*z2+(−v4)*z4 |
91 | 9a41 | 1−t+t2−t3+t4−t5+t6−t7+t8 | 1+10*z2+15z4+7z6+z8 | t4+t6−t7+t8−t9+t10−t11+t12−t13 | (5v8−4v10)+(20*v8−10*v10)*z2+(21v8−6v10)*z4+(8v8−v10)*z6+(v8)*z8 |
92 | 9a27 | 4−7t+4t2 | 1+4z2 | t−t2+2t3−2t4+2t5−2t6+2t7−t8+t9−t10 | (v2+v8−v10)+(v2+v4+v6+v8)*z2 |
93 | 9a38 | 2−3t+3t2−3t3+3t4−3t5+2t6 | 1+9z2+9z4+2z6 | t3−t4+2t5−2t6+3t7−3t8+3t9−2t10+t11−t12 | (v6+3v8−3v10)+(6v6+7v8−4v10)*z2+(5v6+5v8−v10)*z4+(v6+v8)*z6 |
94 | 9a35 | 3−5t+5t2−5t3+3t4 | 1+7z2+3z4 | t2−t3+2t4−3t5+4t6−3t7+3t8−2t9+t10−t11 | (−2v10+2v8+v4)−(v10−3v8−2v6−3v4)*z2+(v8+v6+v4)*z4 |
95 | 9a36 | 6−11t+6t2 | 1+6z2 | t−2t2+3t3−3t4+4t5−3t6+3t7−2t8+t9−t10 | (v4+v6−v10)+(v2+2v4+2v6+v8)*z2 |
96 | 9a23 | 2−4t+5t2−5t3+5t4−4t5+2t6 | 1+7z2+8z4+2z6 | t3−t4+3t5−3t6+4t7−5t8+4t9−3t10+2t11−t12 | (3v6−v8−v10)+(7v6+3v8−3v10)*z2+(5v6+4v8−v10)*z4+(v6+v8)*z6 |
97 | 9a26 | 3−7t+9t2−7t3+3t4 | 1+5z2+3z4 | t2−t3+3t4−4t5+5t6−5t7+4t8−3t9+2t10−t11 | (2v4−v6+v8−v10)+(3v4+v6+2v8−v10)*z2+(v4+v6+v8)*z4 |
98 | 9a8 | 2−8t+11t2−8t3+2t4 | 1−2z4 | t−3−2t−2+3t−1−4+5t−5t2+5t3−3t4+2t5−t6 | (v−2−1+2v4−v6)+(v−2−2−v2+2v4)*z2+(−1−v2)*z4 |
99 | 9a33 | 2−4t+6t2−7t3+6t4−4t5+2t6 | 1+8z2+8z4+2z6 | t3−t4+3t5−4t6+5t7−5t8+5t9−4t10+2t11−t12 | (2v6+v8−2v10)+(7v6+4v8−3v10)*z2+(5v6+4v8−v10)*z4+(v6+v8)*z6 |
910 | 9a39 | 4−8t+9t2−8t3+4t4 | 1+8z2+4z4 | t2−2t3+4t4−5t5+6t6−5t7+5t8−3t9+t10−t11 | (2v6+v8−2v10)+(2v4+5v6+2v8−v10)*z2+(v4+2v6+v8)*z4 |
911 | 9a20 | 1−5t+7t2−7t3+7t4−5t5+t6 | 1+4z2−z4−z6 | −t−9+2t−8−4t−7+5t−6−5t−5+6t−4−4t−3+3t−2−2t−1+1 | (−2v−8+3v−6−v−4+v−2)+(−v−8+6v−6−4v−4+3v−2)*z2+(2v−6−4v−4+v−2)*z4+(−v−4)*z6 |
912 | 9a22 | 2−9t+13t2−9t3+2t4 | 1+z2−2z4 | t−1−2+4t−5t2+6t3−6t4+5t5−3t6+2t7−t8 | (1−v4+2v6−v8)+(1−v2−v4+2v6)*z2+(−v2−v4)*z4 |
913 | 9a34 | 4−9t+11t2−9t3+4t4 | 1+7z2+4z4 | t2−2t3+4t4−5t5+7t6−6t7+5t8−4t9+2t10−t11 | (3v6−v8−v10)+(2v4+5v6+v8−v10)*z2+(v4+2v6+v8)*z4 |
914 | 9a17 | 2−9t+15t2−9t3+2t4 | 1−z2+2z4 | t−6−2t−5+3t−4−5t−3+6t−2−6t−1+6−4t+3t2−t3 | (v−6−2v−4+v−2+1)+(−2v−4+v−2+1−v2)*z2+(v−2+1)*z4 |
915 | 9a10 | 2−10*t+15t2−10*t3+2t4 | 1+2z2−2z4 | −t−8+2t−7−4t−6+6t−5−6t−4+7t−3−6t−2+4t−1−2+t | (−v−8+v−6+v−4−v−2+1)+(2v−6−v−2+1)*z2+(−v−4−v−2)*z4 |
916 | 9a25 | 2−5t+8t2−9t3+8t4−5t5+2t6 | 1+6z2+7z4+2z6 | t3−t4+4t5−5t6+6t7−7t8+6t9−5t10+3t11−t12 | (4v6−3v8)+(8v6−2v10)*z2+(5v6+3v8−v10)*z4+(v6+v8)*z6 |
917 | 9a14 | 1−5t+9t2−9t3+9t4−5t5+t6 | 1−2z2+z4+z6 | t−3−2t−2+4t−1−5+6t−7t2+6t3−4t4+3t5−t6 | (2v−2−3+2v2)+(v−2−6+5v2−2v4)*z2+(−2+4v2−v4)*z4+(v2)*z6 |
918 | 9a24 | 4−10*t+13t2−10*t3+4t4 | 1+6z2+4z4 | t2−2t3+5t4−6t5+7t6−7t7+6t8−4t9+2t10−t11 | (v4+v6−v10)+(2v4+4v6+v8−v10)*z2+(v4+2v6+v8)*z4 |
919 | 9a3 | 2−10*t+17t2−10*t3+2t4 | 1−2z2+2z4 | t−4−2t−3+4t−2−6t−1+7−7t+6t2−4t3+3t4−t5 | (v−4−v−2+v2)+(−2v−2+v2−v4)*z2+(1+v2)*z4 |
920 | 9a19 | 1−5t+9t2−11t3+9t4−5t5+t6 | 1+2z2−z4−z6 | 1−2t+4t2−5t3+7t4−7t5+6t6−5t7+3t8−t9 | (2v2−2v4+2v6−v8)+(3v2−5v4+5v6−v8)*z2+(v2−4v4+2v6)*z4+(−v4)*z6 |
921 | 9a21 | 2−11t+17t2−11t3+2t4 | 1+3z2−2z4 | −t−8+2t−7−4t−6+6t−5−7t−4+8t−3−6t−2+5t−1−3+t | (−v−8+v−6+v−2)+(2v−6+1)*z2+(−v−4−v−2)*z4 |
922 | 9a2 | 1−5t+10*t2−11t3+10*t4−5t5+t6 | 1−z2+z4+z6 | t−3−2t−2+4t−1−6+7t−7t2+7t3−5t4+3t5−t6 | (2v−2−4+4v2−v4)+(v−2−6+6v2−2v4)*z2+(−2+4v2−v4)*z4+(v2)*z6 |
923 | 9a16 | 4−11t+15t2−11t3+4t4 | 1+5z2+4z4 | t2−2t3+5t4−6t5+8t6−8t7+6t8−5t9+3t10−t11 | (v4+2v6−2v8)+(2v4+4v6−v10)*z2+(v4+2v6+v8)*z4 |
924 | 9a7 | 1−5t+10*t2−13t3+10*t4−5t5+t6 | 1+z2−z4−z6 | t−4−3t−3+5t−2−7t−1+8−7t+7t2−4t3+2t4−t5 | (v−2−3+5v2−2v4)+(2v−2−6+6v2−v4)*z2+(v−2−4+2v2)*z4+(−1)*z6 |
925 | 9a4 | 3−12t+17t2−12t3+3t4 | 1−3z4 | t−1−2+5t−7t2+8t3−8t4+7t5−5t6+3t7−t8 | (1+v2−3v4+3v6−v8)+(1−4v4+3v6)*z2+(−v2−2v4)*z4 |
926 | 9a15 | 1−5t+11t2−13t3+11t4−5t5+t6 | 1+z4+z6 | t−7−3t−6+5t−5−7t−4+8t−3−8t−2+7t−1−4+3t−t2 | (v−6−3v−4+3v−2)+(v−6−5v−4+6v−2−2)*z2+(−2v−4+4v−2−1)*z4+(v−2)*z6 |
927 | 9a12 | 1−5t+11t2−15t3+11t4−5t5+t6 | 1−z4−z6 | t−4−3t−3+5t−2−7t−1+9−8t+7t2−5t3+3t4−t5 | (v−2−2+3v2−v4)+(2v−2−6+5v2−v4)*z2+(v−2−4+2v2)*z4+(−1)*z6 |
928 | 9a5 | 1−5t+12t2−15t3+12t4−5t5+t6 | 1+z2+z4+z6 | −t−2+3t−1−5+8t−8t2+9t3−8t4+5t5−3t6+t7 | (−1+5v2−4v4+v6)+(−2+7v2−5v4+v6)*z2+(−1+4v2−2v4)*z4+(v2)*z6 |
929 | 9a31 | 1−5t+12t2−15t3+12t4−5t5+t6 | 1+z2+z4+z6 | −t−6+3t−5−6t−4+8t−3−8t−2+9t−1−7+5t−3t2+t3 | (−2v−4+5v−2−3+v2)+(−2v−4+7v−2−5+v2)*z2+(−v−4+4v−2−2)*z4+(v−2)*z6 |
930 | 9a1 | 1−5t+12t2−17t3+12t4−5t5+t6 | 1−z2−z4−z6 | −t−5+3t−4−5t−3+8t−2−9t−1+9−8t+6t2−3t3+t4 | (−v−4+4v−2−4+2v2)+(−v−4+5v−2−7+2v2)*z2+(2v−2−4+v2)*z4+(−1)*z6 |
931 | 9a13 | 1−5t+13t2−17t3+13t4−5t5+t6 | 1+2z2+z4+z6 | −t−2+3t−1−5+8t−9t2+10*t3−8t4+6t5−4t6+t7 | (−1+4v2−2v4)+(−2+7v2−4v4+v6)*z2+(−1+4v2−2v4)*z4+(v2)*z6 |
932 | 9a6 | 1−6t+14t2−17t3+14t4−6t5+t6 | 1−z2+z6 | t−7−3t−6+6t−5−9t−4+10*t−3−10*t−2+9t−1−6+4t−t2 | (v−6−2v−4+v−2+1)+(v−6−4v−4+3v−2−1)*z2+(−2v−4+3v−2−1)*z4+(v−2)*z6 |
933 | 9a11 | 1−6t+14t2−19t3+14t4−6t5+t6 | 1+z2−z6 | −t−5+3t−4−6t−3+9t−2−10*t−1+11−9t+7t2−4t3+t4 | (−v−4+2v−2)+(−v−4+4v−2−3+v2)*z2+(2v−2−3+v2)*z4+(−1)*z6 |
934 | 9a28 | 1−6t+16t2−23t3+16t4−6t5+t6 | 1−z2−z6 | −t−5+4t−4−7t−3+10*t−2−12t−1+12−10*t1+8t2−4t3+t4 | (v−2−1+v2)+(−v−4+3v−2−4+v2)*z2+(v2−3+2v−2)*z4+(−1)*z6 |
935 | 9a40 | 7−13t+7t2 | 1+7z2 | t−2t2+3t3−4t4+5t5−3t6+4t7−3t8+t9−t10 | (3v6−v8−v10)+(v2+2v4+3v6+v8)*z2 |
936 | 9a9 | 1−5t+8t2−9t3+8t4−5t5+t6 | 1+3z2−z4−z6 | −t−9+2t−8−4t−7+6t−6−6t−5+6t−4−5t−3+4t−2−2t−1+1 | (−2v−8+4v−6−3v−4+2v−2)+(−v−8+6v−6−5v−4+3v−2)*z2+(2v−6−4v−4+v−2)*z4+(−v−4)*z6 |
937 | 9a18 | 2−11t+19t2−11t3+2t4 | 1−3z2+2z4 | t−4−2t−3+5t−2−7t−1+7−8t+7t2−4t3+3t4−t5 | (v−4−2+2v2)+(−2v−2−1+v2−v4)*z2+(1+v2)*z4 |
938 | 9a30 | 5−14t+19t2−14t3+5t4 | 1+6z2+5z4 | t2−3t3+7t4−8t5+10*t6−10*t7+8t8−6t9+3t10−t11 | (4v6−3v8)+(v4+7v6−v8−v10)*z2+(v4+3v6+v8)*z4 |
939 | 9a32 | 3−14t+21t2−14t3+3t4 | 1+2z2−3z4 | −t−8+3t−7−6t−6+8t−5−9t−4+10*t−3−8t−2+6t−1−3+t | (−v−8+2v−6−2v−4+2v−2)+(3v−6−3v−4+v−2+1)*z2+(−2v−4−v−2)*z4 |
940 | 9a37 | 1−7t+18t2−23t3+18t4−7t5+t6 | 1−z2−z4+z6 | −t−2+5t−1−8+11t−13t2+13t3−11t4+8t5−4t6+t7 | (2−2v2+v4)+(−2v4+v6)*z2+(−1+2v2−2v4)*z4+(v2)*z6 |
941 | 9a29 | 3−12t+19t2−12t3+3t4 | 1+3z4 | t−6−3t−5+5t−4−7t−3+8t−2−8t−1+8−5t+3t2−t3 | (v−6−3v−4+3v−2)+(−3v−4+4v−2−v2)*z2+(2v−2+1)*z4 |
942 | 9n4 | 1−2t+t2−2t3+t4 | 1−2z2−z4 | t−3−t−2+t−1−1+t−t2+t3 | (2v−2−3+2v2)+(v−2−4+v2)*z2+(−1)*z4 |
943 | 9n3 | 1−3t+2t2−t3+2t4−3t5+t6 | 1+z2−3z4−z6 | 1−t+2t2−2t3+2t4−2t5+2t6−t7 | (3v2−4v4+3v6−v8)+(4v2−7v4+4v6)*z2+(v2−5v4+v6)*z4+(−v4)*z6 |
944 | 9n1 | 1−4t+7t2−4t3+t4 | 1+z4 | t−2−2t−1+3−3t+3t2−2t3+2t4−t5 | (v−2−2+3v2−v4)+(−2+3v2−v4)*z2+(v2)*z4 |
945 | 9n2 | 1−6t+9t2−6t3+t4 | 1+2z2−z4 | −t−8+2t−7−3t−6+4t−5−4t−4+4t−3−3t−2+2t−1 | (−v−8+2v−6−2v−4+2v−2)+(2v−6−2v−4+2v−2)*z2+(−v−4)*z4 |
946 | 9n5 | 2−5t+2t2 | 1−2z2 | t−6−t−5+t−4−2t−3+t−2−t−1+2 | (v−6−v−4−v−2+2)+(−v−4−v−2)*z2 |
947 | 9n7 | 1−4t+6t2−5t3+6t4−4t5+t6 | 1−z2+2z4+z6 | −t−2+3t−1−3+5t−5t2+4t3−4t4+2t5 | (1+v2−2v4+v6)+(−2+4v2−3v4)*z2+(−1+4v2−v4)*z4+(v2)*z6 |
948 | 9n6 | 1−7t+11t2−7t3+t4 | 1+3z2−z4 | −2t−6+3t−5−4t−4+6t−3−4t−2+4t−1−3+t | (−2v−6+3v−4)+(3v−4−v−2+1)*z2+(−v−2)*z4 |
949 | 9n8 | 3−6t+7t2−6t3+3t4 | 1+6z2+3z4 | t2−2t3+4t4−4t5+5t6−4t7+3t8−2t9 | (4v6−3v8)+(2v4+6v6−2v8)*z2+(v4+2v6)*z4 |
101 | 10a75 | 4−9t+4t2 | 1−4z2 | t−2−t−1+2−2t+2t2−2t3+2t4−2t5+t6−t7+t8 | (v−2−v6+v8)+(−1−v2−v4−v6)*z2 |
102 | 10a59 | 1−3t+3t2−3t3+3t4−3t5+3t6−3t7+t8 | 1+2z2−5z4−5z6−z8 | t−t2+2t3−2t4+3t5−3t6+3t7−3t8+2t9−2t10+t11 | (4v4−4v6+v8)+(10*v4−14v6+6v8)*z2+(6v4−16v6+5v8)*z4+(v4−7v6+v8)*z6+(−v6)*z8 |
103 | 10a117 | 6−13t+6t2 | 1−6z2 | t−4−t−3+2t−2−3t−1+4−4t+3t2−3t3+2t4−t5+t6 | (v−4−v2+v6)+(−v−2−2−2v2−v4)*z2 |
104 | 10a113 | 3−7t+7t2−7t3+3t4 | 1−5z2−3z4 | t−5−2t−4+3t−3−3t−2+4t−1−4+3t−3t2+2t3−t4+t5 | (v−4−2v2+2v4)+(v−4−2v−2−2−3v2+v4)*z2+(−v−2−1−v2)*z4 |
105 | 10a56 | 1−3t+5t2−5t3+5t4−5t5+5t6−3t7+t8 | 1+4z2+7z4+5z6+z8 | −t−9+2t−8−3t−7+4t−6−5t−5+5t−4−4t−3+4t−2−2t−1+2−t | (−3v−6+5v−4−v−2)+(−7v−6+17v−4−6v−2)*z2+(−5v−6+17v−4−5v−2)*z4+(−v−6+7v−4−v−2)*z6+(v−4)*z8 |
106 | 10a70 | 2−6t+7t2−7t3+7t4−6t5+2t6 | 1−z2−6z4−2z6 | 1−t+3t2−4t3+5t4−6t5+6t6−5t7+3t8−2t9+t10 | (3v2−2v4−v6+v8)+(4v2−4v4−4v6+3v8)*z2+(v2−4v4−4v6+v8)*z4+(−v4−v6)*z6 |
107 | 10a65 | 3−11t+15t2−11t3+3t4 | 1−z2−3z4 | t−1−2+4t−5t2+7t3−7t4+6t5−5t6+3t7−2t8+t9 | (1+v4−2v6+v8)+(1−v2−2v6+v8)*z2+(−v2−v4−v6)*z4 |
108 | 10a114 | 2−5t+5t2−5t3+5t4−5t5+2t6 | 1−3z2−7z4−2z6 | t−2−t−1+2−3t+4t2−4t3+4t4−4t5+3t6−2t7+t8 | (3−3v2+v6)+(4−7v2−3v4+3v6)*z2+(1−5v2−4v4+v6)*z4+(−v2−v4)*z6 |
109 | 10a110 | 1−3t+5t2−7t3+7t4−7t5+5t6−3t7+t8 | 1−2z2−7z4−5z6−z8 | t−3−2t−2+3t−1−4+6t−6t2+6t3−5t4+3t5−2t6+t7 | (3−4v2+2v4)+(7−16v2+7v4)*z2+(5−17v2+5v4)*z4+(1−7v2+v4)*z6+(−v2)*z8 |
1010 | 10a64 | 3−11t+17t2−11t3+3t4 | 1+z2+3z4 | −t−7+2t−6−3t−5+5t−4−6t−3+7t−2−7t−1+6−4t+3t2−t3 | (−v−6+2v−4−v−2+1)+(−v−6+2v−4+1−v2)*z2+(v−4+v−2+1)*z4 |
1011 | 10a116 | 4−11t+13t2−11t3+4t4 | 1−5z2−4z4 | t−3−t−2+3t−1−5+6t−7t2+7t3−6t4+4t5−2t6+t7 | (2v−2−1−v2+v6)+(v−2−2−4v2−v4+v6)*z2+(−1−2v2−v4)*z4 |
1012 | 10a43 | 2−6t+10*t2−11t3+10*t4−6t5+2t6 | 1+4z2+6z4+2z6 | −t−8+2t−7−4t−6+6t−5−7t−4+8t−3−7t−2+6t−1−3+2t−t2 | (−2v−6+2v−4+2v−2−1)+(−3v−6+5v−4+5v−2−3)*z2+(−v−6+4v−4+4v−2−1)*z4+(v−4+v−2)*z6 |
1013 | 10a54 | 2−13t+23t2−13t3+2t4 | 1−5z2+2z4 | t−4−2t−3+5t−2−7t−1+8−9t+8t2−6t3+4t4−2t5+t6 | (v−4−1+v2−v4+v6)+(−2v−2−1−2v4)*z2+(1+v2)*z4 |
1014 | 10a33 | 2−8t+12t2−13t3+12t4−8t5+2t6 | 1+2z2−4z4−2z6 | 1−2t+4t2−6t3+9t4−9t5+9t6−8t7+5t8−3t9+t10 | (v2+v4−v6)+(3v2−v4−2v6+2v8)*z2+(v2−3v4−3v6+v8)*z4+(−v4−v6)*z6 |
1015 | 10a68 | 2−6t+9t2−9t3+9t4−6t5+2t6 | 1+3z2+6z4+2z6 | −t−6+2t−5−4t−4+6t−3−6t−2+7t−1−6+5t−3t2+2t3−t4 | (−2v−4+3v−2+1−v2)+(−3v−4+5v−2+4−3v2)*z2+(−v−4+4v−2+4−v2)*z4+(v−2+1)*z6 |
1016 | 10a115 | 4−12t+15t2−12t3+4t4 | 1−4z2−4z4 | t−3−2t−2+4t−1−5+7t−8t2+7t3−6t4+4t5−2t6+t7 | (v−2+1−2v2+v6)+(v−2−1−4v2−v4+v6)*z2+(−1−2v2−v4)*z4 |
1017 | 10a107 | 1−3t+5t2−7t3+9t4−7t5+5t6−3t7+t8 | 1+2z2+7z4+5z6+z8 | −t−5+2t−4−3t−3+5t−2−6t−1+7−6t+5t2−3t3+2t4−t5 | (−2v−2+5−2v2)+(−7v−2+16−7v2)*z2+(−5v−2+17−5v2)*z4+(−v−2+7−v2)*z6+(1)*z8 |
1018 | 10a63 | 4−14t+19t2−14t3+4t4 | 1−2z2−4z4 | t−3−2t−2+4t−1−6+8t−9t2+9t3−7t4+5t5−3t6+t7 | (v−2−v2+v4)+(v−2−1−3v2+v6)*z2+(−1−2v2−v4)*z4 |
1019 | 10a108 | 2−7t+11t2−11t3+11t4−7t5+2t6 | 1+z2+5z4+2z6 | −t−4+2t−3−3t−2+6t−1−7+8t−8t2+7t3−5t4+3t5−t6 | (−v−2+3−v2)+(−3v−2+5+v2−2v4)*z2+(−v−2+4+3v2−v4)*z4+(1+v2)*z6 |
1020 | 10a74 | 3−9t+11t2−9t3+3t4 | 1−3z2−3z4 | t−1−1+3t−4t2+5t3−6t4+5t5−4t6+3t7−2t8+t9 | (2−v2−v6+v8)+(1−2v2−v4−2v6+v8)*z2+(−v2−v4−v6)*z4 |
1021 | 10a60 | 2−7t+9t2−9t3+9t4−7t5+2t6 | 1+z2−5z4−2z6 | 1−2t+4t2−5t3+7t4−7t5+7t6−6t7+3t8−2t9+t10 | (v2+2v4−3v6+v8)+(3v2−5v6+3v8)*z2+(v2−3v4−4v6+v8)*z4+(−v4−v6)*z6 |
1022 | 10a112 | 2−6t+10*t2−13t3+10*t4−6t5+2t6 | 1−4z2−6z4−2z6 | t−4−2t−3+4t−2−6t−1+8−8t+7t2−6t3+4t4−2t5+t6 | (2v−2−1−2v2+2v4)+(3v−2−5−5v2+3v4)*z2+(v−2−4−4v2+v4)*z4+(−1−v2)*z6 |
1023 | 10a57 | 2−7t+13t2−15t3+13t4−7t5+2t6 | 1+3z2+5z4+2z6 | −t−8+2t−7−4t−6+7t−5−9t−4+10*t−3−9t−2+8t−1−5+3t−t2 | (−2v−6+3v−4)+(−3v−6+6v−4+2v−2−2)*z2+(−v−6+4v−4+3v−2−1)*z4+(v−4+v−2)*z6 |
1024 | 10a71 | 4−14t+19t2−14t3+4t4 | 1−2z2−4z4 | t−1−2+5t−7t2+9t3−9t4+8t5−7t6+4t7−2t8+t9 | (1+v2−v4−v6+v8)+(1−3v4−v6+v8)*z2+(−v2−2v4−v6)*z4 |
1025 | 10a61 | 2−8t+14t2−17t3+14t4−8t5+2t6 | 1−4z4−2z6 | 1−2t+5t2−7t3+10*t4−11t5+10*t6−9t7+6t8−3t9+t10 | (2v2−2v6+v8)+(3v2−2v4−3v6+2v8)*z2+(v2−3v4−3v6+v8)*z4+(−v4−v6)*z6 |
1026 | 10a111 | 2−7t+13t2−17t3+13t4−7t5+2t6 | 1−3z2−5z4−2z6 | t−4−3t−3+6t−2−8t−1+10−10*t+9t2−7t3+4t4−2t5+t6 | (v−2+1−3v2+2v4)+(2v−2−2−6v2+3v4)*z2+(v−2−3−4v2+v4)*z4+(−1−v2)*z6 |
1027 | 10a58 | 2−8t+16t2−19t3+16t4−8t5+2t6 | 1+2z2+4z4+2z6 | −t−8+3t−7−6t−6+9t−5−11t−4+12t−3−11t−2+9t−1−5+3t−t2 | (−v−6+v−4+v−2)+(−2v−6+3v−4+3v−2−2)*z2+(−v−6+3v−4+3v−2−1)*z4+(v−4+v−2)*z6 |
1028 | 10a44 | 4−13t+19t2−13t3+4t4 | 1+3z2+4z4 | −t−7+2t−6−4t−5+6t−4−7t−3+9t−2−8t−1+7−5t+3t2−t3 | (−v−6+3v−2−1)+(−v−6+v−4+4v−2−v2)*z2+(v−4+2v−2+1)*z4 |
1029 | 10a53 | 1−7t+15t2−17t3+15t4−7t5+t6 | 1−4z2−z4+z6 | t−3−2t−2+5t−1−7+9t−11t2+10*t3−8t4+6t5−3t6+t7 | (2v−2−2+v2−v4+v6)+(v−2−5+3v2−4v4+v6)*z2+(−2+3v2−2v4)*z4+(v2)*z6 |
1030 | 10a34 | 4−17t+25t2−17t3+4t4 | 1+z2−4z4 | t−1−3+6t−8t2+11t3−11t4+10*t5−8t6+5t7−3t8+t9 | (2v2−v4)+(1+v2−2v4+v8)*z2+(−v2−2v4−v6)*z4 |
1031 | 10a69 | 4−14t+21t2−14t3+4t4 | 1+2z2+4z4 | −t−5+2t−4−4t−3+7t−2−8t−1+10−9t+7t2−5t3+3t4−t5 | (−v−4+v−2+2−v2)+(−v−4+v−2+3−v4)*z2+(v−2+2+v2)*z4 |
1032 | 10a55 | 2−8t+15t2−19t3+15t4−8t5+2t6 | 1−z2−4z4−2z6 | t−4−3t−3+6t−2−9t−1+11−11t+11t2−8t3+5t4−3t5+t6 | (v−2−1+v2)+(2v−2−3−2v2+2v4)*z2+(v−2−3−3v2+v4)*z4+(−1−v2)*z6 |
1033 | 10a109 | 4−16t+25t2−16t3+4t4 | 1+4z4 | −t−5+3t−4−5t−3+8t−2−10*t−1+11−10*t+8t2−5t3+3t4−t5 | (1)+(−v−4+2−v4)*z2+(v−2+2+v2)*z4 |
1034 | 10a19 | 3−9t+13t2−9t3+3t4 | 1+3z2+3z4 | −t−7+2t−6−3t−5+4t−4−5t−3+6t−2−5t−1+5−3t+2t2−t3 | (−v−6+v−4+2−v2)+(−v−6+2v−4+v−2+2−v2)*z2+(v−4+v−2+1)*z4 |
1035 | 10a23 | 2−12t+21t2−12t3+2t4 | 1−4z2+2z4 | t−6−2t−5+4t−4−6t−3+7t−2−8t−1+8−6t+4t2−2t3+t4 | (v−6−v−4+1−v2+v4)+(−2v−4−2v2)*z2+(v−2+1)*z4 |
1036 | 10a5 | 3−13t+19t2−13t3+3t4 | 1+z2−3z4 | t−1−2+4t−6t2+8t3−8t4+8t5−6t6+4t7−3t8+t9 | (1−v2+2v4−v6)+(1−v2+v4−v6+v8)*z2+(−v2−v4−v6)*z4 |
1037 | 10a49 | 4−13t+19t2−13t3+4t4 | 1+3z2+4z4 | −t−5+2t−4−4t−3+7t−2−8t−1+9−8t+7t2−4t3+2t4−t5 | (−v−4+v−2+1+v2−v4)+(−v−4+v−2+3+v2−v4)*z2+(v−2+2+v2)*z4 |
1038 | 10a29 | 4−15t+21t2−15t3+4t4 | 1−z2−4z4 | t−1−2+5t−7t2+9t3−10*t4+9t5−7t6+5t7−3t8+t9 | (1+v2−2v4+v6)+(1−3v4+v8)*z2+(−v2−2v4−v6)*z4 |
1039 | 10a26 | 2−8t+13t2−15t3+13t4−8t5+2t6 | 1+z2−4z4−2z6 | 1−2t+5t2−7t3+9t4−10*t5+10*t6−8t7+5t8−3t9+t10 | (2v2−v4)+(3v2−2v4−2v6+2v8)*z2+(v2−3v4−3v6+v8)*z4+(−v4−v6)*z6 |
1040 | 10a30 | 2−8t+17t2−21t3+17t4−8t5+2t6 | 1+3z2+4z4+2z6 | −t−8+3t−7−6t−6+9t−5−12t−4+13t−3−11t−2+10*t−1−6+3t−t2 | (−v−6+3v−2−1)+(−2v−6+3v−4+4v−2−2)*z2+(−v−6+3v−4+3v−2−1)*z4+(v−4+v−2)*z6 |
1041 | 10a35 | 1−7t+17t2−21t3+17t4−7t5+t6 | 1−2z2−z4+z6 | t−3−3t−2+6t−1−8+11t−12t2+11t3−9t4+6t5−3t6+t7 | (v−2−1+2v2−2v4+v6)+(v−2−4+4v2−4v4+v6)*z2+(−2+3v2−2v4)*z4+(v2)*z6 |
1042 | 10a31 | 1−7t+19t2−27t3+19t4−7t5+t6 | 1+z4−z6 | −t−5+3t−4−6t−3+10*t−2−12t−1+14−13t+10*t2−7t3+4t4−t5 | (−v−4+3v−2−2+v2)+(−v−4+4v−2−5+3v2−v4)*z2+(2v−2−3+2v2)*z4+(−1)*z6 |
1043 | 10a52 | 1−7t+17t2−23t3+17t4−7t5+t6 | 1+2z2+z4−z6 | −t−5+3t−4−6t−3+9t−2−11t−1+13−11t+9t2−6t3+3t4−t5 | (−v−4+2v−2−1+2v2−v4)+(−v−4+4v−2−4+4v2−v4)*z2+(2v−2−3+2v2)*z4+(−1)*z6 |
1044 | 10a32 | 1−7t+19t2−25t3+19t4−7t5+t6 | 1−z4+z6 | t−3−3t−2+6t−1−9+12t−13t2+13t3−10*t4+7t5−4t6+t7 | (v−2−2+3v2−v4)+(v−2−4+5v2−3v4+v6)*z2+(−2+3v2−2v4)*z4+(v2)*z6 |
1045 | 10a25 | 1−7t+21t2−31t3+21t4−7t5+t6 | 1−2z2+z4−z6 | −t−5+4t−4−7t−3+11t−2−14t−1+15−14t+11t2−7t3+4t4−t5 | (2v−2−3+2v2)+(−v−4+3v−2−6+3v2−v4)*z2+(2v−2−3+2v2)*z4+(−1)*z6 |
1046 | 10a81 | 1−3t+4t2−5t3+5t4−5t5+4t6−3t7+t8 | 1−6z4−5z6−z8 | t−t2+3t3−3t4+4t5−5t6+4t7−4t8+3t9−2t10+t11 | (6v4−8v6+3v8)+(11v4−18v6+7v8)*z2+(6v4−17v6+5v8)*z4+(v4−7v6+v8)*z6+(−v6)*z8 |
1047 | 10a15 | 1−3t+6t2−7t3+7t4−7t5+6t6−3t7+t8 | 1+6z2+8z4+5z6+z8 | −t−9+2t−8−4t−7+5t−6−6t−5+7t−4−5t−3+5t−2−3t−1+2−t | (−5v−6+9v−4−3v−2)+(−8v−6+21v−4−7v−2)*z2+(−5v−6+18v−4−5v−2)*z4+(−v−6+7v−4−v−2)*z6+(v−4)*z8 |
1048 | 10a79 | 1−3t+6t2−9t3+11t4−9t5+6t6−3t7+t8 | 1+4z2+8z4+5z6+z8 | −t−5+2t−4−4t−3+6t−2−7t−1+9−7t+6t2−4t3+2t4−t5 | (−4v−2+9−4v2)+(−8v−2+20−8v2)*z2+(−5v−2+18−5v2)*z4+(−v−2+7−v2)*z6+(1)*z8 |
1049 | 10a13 | 3−8t+12t2−13t3+12t4−8t5+3t6 | 1+7z2+10*z4+3z6 | t3−2t4+5t5−6t6+9t7−10*t8+9t9−8t10+5t11−3t12+t13 | (v6+5v8−7v10+2v12)+(4v6+12v8−10*v10+v12)*z2+(4v6+9v8−3v10)*z4+(v6+2v8)*z6 |
1050 | 10a82 | 2−7t+11t2−13t3+11t4−7t5+2t6 | 1−z2−5z4−2z6 | 1−2t+5t2−6t3+8t4−9t5+8t6−7t7+4t8−2t9+t10 | (2v2+v4−4v6+2v8)+(3v2−v4−6v6+3v8)*z2+(v2−3v4−4v6+v8)*z4+(−v4−v6)*z6 |
1051 | 10a16 | 2−7t+15t2−19t3+15t4−7t5+2t6 | 1+5z2+5z4+2z6 | −t−8+2t−7−5t−6+8t−5−10*t−4+12t−3−10*t−2+9t−1−6+3t−t2 | (−3v−6+4v−4+v−2−1)+(−3v−6+7v−4+3v−2−2)*z2+(−v−6+4v−4+3v−2−1)*z4+(v−4+v−2)*z6 |
1052 | 10a80 | 2−7t+13t2−15t3+13t4−7t5+2t6 | 1+3z2+5z4+2z6 | −t−4+2t−3−4t−2+7t−1−8+10*t−9t2+8t3−6t4+3t5−t6 | (−2v−2+4−v4)+(−3v−2+6+2v2−2v4)*z2+(−v−2+4+3v2−v4)*z4+(1+v2)*z6 |
1053 | 10a14 | 6−18t+25t2−18t3+6t4 | 1+6z2+6z4 | t2−3t3+7t4−9t5+12t6−12t7+11t8−9t9+5t10−3t11+t12 | (3v6−3v10+v12)+(v4+6v6+2v8−3v10)*z2+(v4+3v6+2v8)*z4 |
1054 | 10a48 | 2−6t+10*t2−11t3+10*t4−6t5+2t6 | 1+4z2+6z4+2z6 | −t−6+2t−5−4t−4+6t−3−7t−2+8t−1−6+6t−4t2+2t3−t4 | (−2v−4+2v−2+3−2v2)+(−3v−4+5v−2+5−3v2)*z2+(−v−4+4v−2+4−v2)*z4+(v−2+1)*z6 |
1055 | 10a9 | 5−15t+21t2−15t3+5t4 | 1+5z2+5z4 | t2−2t3+5t4−7t5+10*t6−10*t7+9t8−8t9+5t10−3t11+t12 | (v4+v6+v8−3v10+v12)+(2v4+3v6+3v8−3v10)*z2+(v4+2v6+2v8)*z4 |
1056 | 10a28 | 2−8t+14t2−17t3+14t4−8t5+2t6 | 1−4z4−2z6 | 1−2t+5t2−7t3+10*t4−11t5+10*t6−9t7+6t8−3t9+t10 | (2v2−2v6+v8)+(3v2−2v4−3v6+2v8)*z2+(v2−3v4−3v6+v8)*z4+(−v4−v6)*z6 |
1057 | 10a6 | 2−8t+18t2−23t3+18t4−8t5+2t6 | 1+4z2+4z4+2z6 | −t−8+3t−7−7t−6+10*t−5−12t−4+14t−3−12t−2+10*t−1−6+3t−t2 | (−2v−6+2v−4+2v−2−1)+(−2v−6+4v−4+4v−2−2)*z2+(−v−6+3v−4+3v−2−1)*z4+(v−4+v−2)*z6 |
1058 | 10a20 | 3−16t+27t2−16t3+3t4 | 1−4z2+3z4 | t−4−2t−3+5t−2−8t−1+10−11t+10*t2−8t3+6t4−3t5+t6 | (v−4−2+3v2−2v4+v6)+(−2v−2−2+3v2−3v4)*z2+(1+2v2)*z4 |
1059 | 10a2 | 1−7t+18t2−23t3+18t4−7t5+t6 | 1−z2−z4+z6 | t−3−3t−2+6t−1−9+12t−12t2+12t3−10*t4+6t5−3t6+t7 | (v−2−2+4v2−3v4+v6)+(v−2−4+5v2−4v4+v6)*z2+(−2+3v2−2v4)*z4+(v2)*z6 |
1060 | 10a1 | 1−7t+20*t2−29t3+20*t4−7t5+t6 | 1−z2+z4−z6 | t−6−3t−5+6t−4−10*t−3+13t−2−14t−1+14−11t+8t2−4t3+t4 | (v−6−3v−4+4v−2−2+v2)+(−3v−4+6v−2−5+v2)*z2+(3v−2−3+v2)*z4+(−1)*z6 |
1061 | 10a123 | 2−5t+6t2−7t3+6t4−5t5+2t6 | 1−4z2−7z4−2z6 | t−2−t−1+3−4t+4t2−5t3+5t4−4t5+3t6−2t7+t8 | (4−5v2+v4+v6)+(4−8v2−3v4+3v6)*z2+(1−5v2−4v4+v6)*z4+(−v2−v4)*z6 |
1062 | 10a41 | 1−3t+6t2−8t3+9t4−8t5+6t6−3t7+t8 | 1+5z2+8z4+5z6+z8 | −t−9+2t−8−4t−7+6t−6−7t−5+7t−4−6t−3+6t−2−3t−1+2−t | (−4v−6+7v−4−2v−2)+(−8v−6+20*v−4−7v−2)*z2+(−5v−6+18v−4−5v−2)*z4+(−v−6+7v−4−v−2)*z6+(v−4)*z8 |
1063 | 10a51 | 5−14t+19t2−14t3+5t4 | 1+6z2+5z4 | t2−2t3+5t4−7t5+9t6−9t7+9t8−7t9+4t10−3t11+t12 | (v4+3v8−4v10+v12)+(2v4+3v6+4v8−3v10)*z2+(v4+2v6+2v8)*z4 |
1064 | 10a122 | 1−3t+6t2−10*t3+11t4−10*t5+6t6−3t7+t8 | 1−3z2−8z4−5z6−z8 | t−3−2t−2+4t−1−6+8t−8t2+8t3−7t4+4t5−2t6+t7 | (4−6v2+3v4)+(8−19v2+8v4)*z2+(5−18v2+5v4)*z4+(1−7v2+v4)*z6+(−v2)*z8 |
1065 | 10a42 | 2−7t+14t2−17t3+14t4−7t5+2t6 | 1+4z2+5z4+2z6 | −t−8+2t−7−5t−6+8t−5−9t−4+11t−3−10*t−2+8t−1−5+3t−t2 | (−3v−6+5v−4−v−2)+(−3v−6+7v−4+2v−2−2)*z2+(−v−6+4v−4+3v−2−1)*z4+(v−4+v−2)*z6 |
1066 | 10a40 | 3−9t+16t2−19t3+16t4−9t5+3t6 | 1+7z2+9z4+3z6 | t3−2t4+6t5−8t6+11t7−13t8+12t9−10*t10+7t11−4t12+t13 | (2v6+2v8−4v10+v12)+(5v6+9v8−8v10+v12)*z2+(4v6+8v8−3v10)*z4+(v6+2v8)*z6 |
1067 | 10a37 | 4−16t+23t2−16t3+4t4 | 1−4z4 | t−1−2+5t−8t2+10*t3−10*t4+10*t5−8t6+5t7−3t8+t9 | (1)+(1−2v4+v8)*z2+(−v2−2v4−v6)*z4 |
1068 | 10a67 | 4−14t+21t2−14t3+4t4 | 1+2z2+4z4 | −t−7+2t−6−4t−5+7t−4−8t−3+9t−2−9t−1+8−5t+3t2−t3 | (−v−6+v−4+v−2)+(−v−6+v−4+3v−2−v2)*z2+(v−4+2v−2+1)*z4 |
1069 | 10a38 | 1−7t+21t2−29t3+21t4−7t5+t6 | 1+2z2−z4+z6 | −t−8+3t−7−7t−6+11t−5−13t−4+15t−3−14t−2+11t−1−7+4t−t2 | (−v−8+2v−6−2v−4+2v−2)+(3v−6−5v−4+5v−2−1)*z2+(−3v−4+3v−2−1)*z4+(v−2)*z6 |
1070 | 10a22 | 1−7t+16t2−19t3+16t4−7t5+t6 | 1−3z2−z4+z6 | t−7−3t−6+6t−5−9t−4+11t−3−11t−2+10*t−1−8+5t−2t2+t3 | (v−6−2v−4+3v−2−3+2v2)+(v−6−4v−4+4v−2−5+v2)*z2+(−2v−4+3v−2−2)*z4+(v−2)*z6 |
1071 | 10a10 | 1−7t+18t2−25t3+18t4−7t5+t6 | 1+z2+z4−z6 | −t−5+3t−4−6t−3+10*t−2−12t−1+13−12t+10*t2−6t3+3t4−t5 | (−v−4+3v−2−3+3v2−v4)+(−v−4+4v−2−5+4v2−v4)*z2+(2v−2−3+2v2)*z4+(−1)*z6 |
1072 | 10a4 | 2−9t+16t2−19t3+16t4−9t5+2t6 | 1+2z2−3z4−2z6 | 1−2t+5t2−8t3+11t4−12t5+12t6−10*t7+7t8−4t9+t10 | (2v2−2v4+2v6−v8)+(3v2−3v4+v6+v8)*z2+(v2−3v4−2v6+v8)*z4+(−v4−v6)*z6 |
1073 | 10a3 | 1−7t+20*t2−27t3+20*t4−7t5+t6 | 1+z2−z4+z6 | −t−8+3t−7−6t−6+10*t−5−13t−4+14t−3−13t−2+11t−1−7+4t−t2 | (−v−8+3v−6−4v−4+3v−2)+(3v−6−6v−4+5v−2−1)*z2+(−3v−4+3v−2−1)*z4+(v−2)*z6 |
1074 | 10a62 | 4−16t+23t2−16t3+4t4 | 1−4z4 | t−1−3+6t−8t2+11t3−10*t4+9t5−8t6+4t7−2t8+t9 | (2v2−2v6+v8)+(1+v2−2v4−v6+v8)*z2+(−v2−2v4−v6)*z4 |
1075 | 10a27 | 1−7t+19t2−27t3+19t4−7t5+t6 | 1+z4−z6 | t−6−3t−5+6t−4−10*t−3+12t−2−13t−1+14−10*t+7t2−4t3+t4 | (v−6−3v−4+3v−2)+(−3v−4+6v−2−4+v2)*z2+(3v−2−3+v2)*z4+(−1)*z6 |
1076 | 10a73 | 2−7t+12t2−15t3+12t4−7t5+2t6 | 1−2z2−5z4−2z6 | 1−t+4t2−6t3+8t4−10*t5+9t6−8t7+6t8−3t9+t10 | (4v2−4v4+v8)+(4v2−6v4−2v6+2v8)*z2+(v2−4v4−3v6+v8)*z4+(−v4−v6)*z6 |
1077 | 10a18 | 2−7t+14t2−17t3+14t4−7t5+2t6 | 1+4z2+5z4+2z6 | −t−8+3t−7−6t−6+8t−5−10*t−4+11t−3−9t−2+8t−1−4+2t−t2 | (−v−6−v−4+5v−2−2)+(−2v−6+2v−4+7v−2−3)*z2+(−v−6+3v−4+4v−2−1)*z4+(v−4+v−2)*z6 |
1078 | 10a17 | 1−7t+16t2−21t3+16t4−7t5+t6 | 1+3z2+z4−z6 | 1−3t+6t2−8t3+11t4−11t5+11t6−9t7+5t8−3t9+t10 | (v2−v4+4v6−4v8+v10)+(2v2−3v4+7v6−3v8)*z2+(v2−3v4+3v6)*z4+(−v4)*z6 |
1079 | 10a78 | 1−3t+7t2−12t3+15t4−12t5+7t6−3t7+t8 | 1+5z2+9z4+5z6+z8 | −t−5+2t−4−5t−3+8t−2−9t−1+11−9t+8t2−5t3+2t4−t5 | (−5v−2+11−5v2)+(−9v−2+23−9v2)*z2+(−5v−2+19−5v2)*z4+(−v−2+7−v2)*z6+(1)*z8 |
1080 | 10a8 | 3−9t+15t2−17t3+15t4−9t5+3t6 | 1+6z2+9z4+3z6 | t3−2t4+6t5−8t6+11t7−12t8+11t9−10*t10+6t11−3t12+t13 | (2v6+3v8−6v10+2v12)+(5v6+9v8−9v10+v12)*z2+(4v6+8v8−3v10)*z4+(v6+2v8)*z6 |
1081 | 10a7 | 1−8t+20*t2−27t3+20*t4−8t5+t6 | 1+3z2+2z4−z6 | −t−5+3t−4−7t−3+11t−2−13t−1+15−13t+11t2−7t3+3t4−t5 | (−v−4+v−2+1+v2−v4)+(−v−4+3v−2−1+3v2−v4)*z2+(2v−2−2+2v2)*z4+(−1)*z6 |
1082 | 10a83 | 1−4t+8t2−12t3+13t4−12t5+8t6−4t7+t8 | 1−4z4−4z6−z8 | t−3−3t−2+5t−1−7+10*t−10*t2+10*t3−8t4+5t5−3t6+t7 | (1)+(4−8v2+4v4)*z2+(4−12v2+4v4)*z4+(1−6v2+v4)*z6+(−v2)*z8 |
1083 | 10a87 | 2−9t+19t2−23t3+19t4−9t5+2t6 | 1+z2+3z4+2z6 | −t−8+3t−7−6t−6+10*t−5−13t−4+14t−3−13t−2+11t−1−7+4t−t2 | (−v−6+2v−4−v−2+1)+(−2v−6+4v−4−1)*z2+(−v−6+3v−4+2v−2−1)*z4+(v−4+v−2)*z6 |
1084 | 10a50 | 2−9t+20*t2−25t3+20*t4−9t5+2t6 | 1+2z2+3z4+2z6 | −t−2+3t−1−6+11t−13t2+15t3−14t4+11t5−8t6+4t7−t8 | (−1+4v2−2v4)+(−2+5v2−v6)*z2+(−1+3v2+2v4−v6)*z4+(v2+v4)*z6 |
1085 | 10a86 | 1−4t+8t2−10*t3+11t4−10*t5+8t6−4t7+t8 | 1+2z2+4z4+4z6+z8 | −t−9+3t−8−5t−7+7t−6−9t−5+9t−4−8t−3+7t−2−4t−1+3−t | (−v−6+v−4+v−2)+(−4v−6+9v−4−3v−2)*z2+(−4v−6+12v−4−4v−2)*z4+(−v−6+6v−4−v−2)*z6+(v−4)*z8 |
1086 | 10a84 | 2−9t+19t2−25t3+19t4−9t5+2t6 | 1−z2−3z4−2z6 | t−4−4t−3+8t−2−11t−1+14−14t+13t2−10*t3+6t4−3t5+t6 | (2−2v2+v4)+(v−2−4v2+2v4)*z2+(v−2−2−3v2+v4)*z4+(−1−v2)*z6 |
1087 | 10a39 | 2−9t+18t2−23t3+18t4−9t5+2t6 | 1−3z4−2z6 | t−4−3t−3+6t−2−10*t−1+13−13t+13t2−10*t3+7t4−4t5+t6 | (v−2−2+3v2−v4)+(2v−2−4+v2+v4)*z2+(v−2−3−2v2+v4)*z4+(−1−v2)*z6 |
1088 | 10a11 | 1−8t+24t2−35t3+24t4−8t5+t6 | 1−z2+2z4−z6 | −t−5+4t−4−8t−3+13t−2−16t−1+17−16t+13t2−8t3+4t4−t5 | (v−2−1+v2)+(−v−4+2v−2−3+2v2−v4)*z2+(2v−2−2+2v2)*z4+(−1)*z6 |
1089 | 10a21 | 1−8t+24t2−33t3+24t4−8t5+t6 | 1+z2−2z4+z6 | −t−8+3t−7−7t−6+12t−5−15t−4+17t−3−16t−2+13t−1−9+5t−t2 | (−v−8+2v−6−v−4+1)+(3v−6−4v−4+2v−2)*z2+(−3v−4+2v−2−1)*z4+(v−2)*z6 |
1090 | 10a92 | 2−8t+17t2−23t3+17t4−8t5+2t6 | 1−3z2−4z4−2z6 | t−4−3t−3+7t−2−10*t−1+12−13t+12t2−9t3+6t4−3t5+t6 | (2v−2−2+v4)+(2v−2−4−3v2+2v4)*z2+(v−2−3−3v2+v4)*z4+(−1−v2)*z6 |
1091 | 10a106 | 1−4t+9t2−14t3+17t4−14t5+9t6−4t7+t8 | 1+2z2+5z4+4z6+z8 | −t−5+3t−4−6t−3+9t−2−11t−1+13−11t+9t2−6t3+3t4−t5 | (−2v−2+5−2v2)+(−5v−2+12−5v2)*z2+(−4v−2+13−4v2)*z4+(−v−2+6−v2)*z6+(1)*z8 |
1092 | 10a46 | 2−10*t+20*t2−25t3+20*t4−10*t5+2t6 | 1+2z2−2z4−2z6 | 1−3t+7t2−10*t3+14t4−15t5+14t6−12t7+8t8−4t9+t10 | (v2+v4−v6)+(2v2−v6+v8)*z2+(v2−2v4−2v6+v8)*z4+(−v4−v6)*z6 |
1093 | 10a101 | 2−8t+15t2−17t3+15t4−8t5+2t6 | 1+z2+4z4+2z6 | −t−6+3t−5−6t−4+9t−3−10*t−2+11t−1−10+8t−5t2+3t3−t4 | (−v−4+2v−2)+(−2v−4+3v−2+2−2v2)*z2+(−v−4+3v−2+3−v2)*z4+(v−2+1)*z6 |
1094 | 10a91 | 1−4t+9t2−14t3+15t4−14t5+9t6−4t7+t8 | 1−2z2−5z4−4z6−z8 | t−3−3t−2+6t−1−8+11t−12t2+11t3−9t4+6t5−3t6+t7 | (3−4v2+2v4)+(5−12v2+5v4)*z2+(4−13v2+4v4)*z4+(1−6v2+v4)*z6+(−v2)*z8 |
1095 | 10a47 | 2−9t+21t2−27t3+21t4−9t5+2t6 | 1+3z2+3z4+2z6 | −t−8+3t−7−7t−6+11t−5−14t−4+16t−3−14t−2+12t−1−8+4t−t2 | (−2v−6+3v−4)+(−2v−6+5v−4+v−2−1)*z2+(−v−6+3v−4+2v−2−1)*z4+(v−4+v−2)*z6 |
1096 | 10a24 | 1−7t+22t2−33t3+22t4−7t5+t6 | 1−3z2+z4−z6 | t−6−3t−5+7t−4−11t−3+14t−2−16t−1+15−12t+9t2−4t3+t4 | (v−6−2v−4+3v−2−3+2v2)+(−3v−4+5v−2−6+v2)*z2+(3v−2−3+v2)*z4+(−1)*z6 |
1097 | 10a12 | 5−22t+33t2−22t3+5t4 | 1+2z2−5z4 | t−1−3+7t−11t2+14t3−14t4+14t5−11t6+7t7−4t8+t9 | (2v2−2v4+2v6−v8)+(1+2v2−4v4+2v6+v8)*z2+(−v2−3v4−v6)*z4 |
1098 | 10a96 | 2−9t+18t2−23t3+18t4−9t5+2t6 | 1−3z4−2z6 | 1−3t+7t2−9t3+13t4−14t5+12t6−11t7+7t8−3t9+t10 | (v2+3v4−5v6+2v8)+(2v2+v4−5v6+2v8)*z2+(v2−2v4−3v6+v8)*z4+(−v4−v6)*z6 |
1099 | 10a103 | 1−4t+10*t2−16t3+19t4−16t5+10*t6−4t7+t8 | 1+4z2+6z4+4z6+z8 | −t−5+3t−4−7t−3+10*t−2−12t−1+15−12t+10*t2−7t3+3t4−t5 | (−4v−2+9−4v2)+(−6v−2+16−6v2)*z2+(−4v−2+14−4v2)*z4+(−v−2+6−v2)*z6+(1)*z8 |
10100 | 10a104 | 1−4t+9t2−12t3+13t4−12t5+9t6−4t7+t8 | 1+4z2+5z4+4z6+z8 | −t−9+3t−8−6t−7+8t−6−10*t−5+11t−4−9t−3+8t−2−5t−1+3−t | (−3v−6+5v−4−v−2)+(−5v−6+13v−4−4v−2)*z2+(−4v−6+13v−4−4v−2)*z4+(−v−6+6v−4−v−2)*z6+(v−4)*z8 |
10101 | 10a45 | 7−21t+29t2−21t3+7t4 | 1+7z2+7z4 | t2−3t3+7t4−10*t5+14t6−14t7+13t8−11t9+7t10−4t11+t12 | (2v6+2v8−4v10+v12)+(v4+5v6+5v8−4v10)*z2+(v4+3v6+3v8)*z4 |
10102 | 10a97 | 2−8t+16t2−21t3+16t4−8t5+2t6 | 1−2z2−4z4−2z6 | t−4−3t−3+6t−2−9t−1+12−12t+11t2−9t3+6t4−3t5+t6 | (v−2−v2+v4)+(2v−2−3−3v2+2v4)*z2+(v−2−3−3v2+v4)*z4+(−1−v2)*z6 |
10103 | 10a105 | 2−8t+17t2−21t3+17t4−8t5+2t6 | 1+3z2+4z4+2z6 | −t−8+3t−7−6t−6+9t−5−12t−4+13t−3−11t−2+10*t−1−6+3t−t2 | (−v−6+3v−2−1)+(−2v−6+3v−4+4v−2−2)*z2+(−v−6+3v−4+3v−2−1)*z4+(v−4+v−2)*z6 |
10104 | 10a118 | 1−4t+9t2−15t3+19t4−15t5+9t6−4t7+t8 | 1+z2+5z4+4z6+z8 | −t−5+3t−4−6t−3+10*t−2−12t−1+13−12t+10*t2−6t3+3t4−t5 | (−v−2+3−v2)+(−5v−2+11−5v2)*z2+(−4v−2+13−4v2)*z4+(−v−2+6−v2)*z6+(1)*z8 |
10105 | 10a72 | 1−8t+22t2−29t3+22t4−8t5+t6 | 1−z2−2z4+z6 | t−3−3t−2+7t−1−11+14t−15t2+15t3−12t4+8t5−4t6+t7 | (v−2−1+v2)+(v−2−3+2v2−2v4+v6)*z2+(−2+2v2−2v4)*z4+(v2)*z6 |
10106 | 10a95 | 1−4t+9t2−15t3+17t4−15t5+9t6−4t7+t8 | 1−z2−5z4−4z6−z8 | t−3−3t−2+6t−1−9+12t−12t2+12t3−10*t4+6t5−3t6+t7 | (2−2v2+v4)+(5−11v2+5v4)*z2+(4−13v2+4v4)*z4+(1−6v2+v4)*z6+(−v2)*z8 |
10107 | 10a66 | 1−8t+22t2−31t3+22t4−8t5+t6 | 1+z2+2z4−z6 | −t−5+3t−4−7t−3+12t−2−14t−1+16−15t+12t2−8t3+4t4−t5 | (−v−4+2v−2)+(−v−4+3v−2−2+2v2−v4)*z2+(2v−2−2+2v2)*z4+(−1)*z6 |
10108 | 10a119 | 2−8t+14t2−15t3+14t4−8t5+2t6 | 1+4z4+2z6 | −t−4+3t−3−5t−2+8t−1−9+10*t−10*t2+8t3−5t4+3t5−t6 | (1)+(−2v−2+2+2v2−2v4)*z2+(−v−2+3+3v2−v4)*z4+(1+v2)*z6 |
10109 | 10a93 | 1−4t+10*t2−17t3+21t4−17t5+10*t6−4t7+t8 | 1+3z2+6z4+4z6+z8 | −t−5+3t−4−7t−3+11t−2−13t−1+15−13t+11t2−7t3+3t4−t5 | (−3v−2+7−3v2)+(−6v−2+15−6v2)*z2+(−4v−2+14−4v2)*z4+(−v−2+6−v2)*z6+(1)*z8 |
10110 | 10a100 | 1−8t+20*t2−25t3+20*t4−8t5+t6 | 1−3z2−2z4+z6 | t−3−3t−2+7t−1−10+13t−14t2+13t3−11t4+7t5−3t6+t7 | (v−2−v4+v6)+(v−2−3+v2−3v4+v6)*z2+(−2+2v2−2v4)*z4+(v2)*z6 |
10111 | 10a98 | 2−9t+17t2−21t3+17t4−9t5+2t6 | 1+z2−3z4−2z6 | 1−3t+7t2−9t3+12t4−13t5+12t6−10*t7+6t8−3t9+t10 | (v2+2v4−3v6+v8)+(2v2+v4−4v6+2v8)*z2+(v2−2v4−3v6+v8)*z4+(−v4−v6)*z6 |
10112 | 10a76 | 1−5t+11t2−17t3+19t4−17t5+11t6−5t7+t8 | 1+2z2−z4−3z6−z8 | t−7−4t−6+7t−5−11t−4+14t−3−14t−2+14t−1−10+7t−4t2+t3 | (−2v−4+4v−2−1)+(v−4+1)*z2+(3v−4−7v−2+3)*z4+(v−4−5v−2+1)*z6+(−v−2)*z8 |
10113 | 10a36 | 2−11t+26t2−33t3+26t4−11t5+2t6 | 1+z4+2z6 | −t−2+4t−1−8+14t−17t2+19t3−18t4+14t5−10*t6+5t7−t8 | (3v2−3v4+v6)+(−1+3v2−2v4)*z2+(−1+2v2+v4−v6)*z4+(v2+v4)*z6 |
10114 | 10a77 | 2−10*t+21t2−27t3+21t4−10*t5+2t6 | 1+z2−2z4−2z6 | t−6−4t−5+7t−4−11t−3+15t−2−15t−1+15−12t+8t2−4t3+t4 | (−v−4+2v−2)+(v−4−1+v2)*z2+(v−4−2v−2−2+v2)*z4+(−v−2−1)*z6 |
10115 | 10a94 | 1−9t+26t2−37t3+26t4−9t5+t6 | 1+z2+3z4−z6 | −t−5+4t−4−9t−3+14t−2−17t−1+19−17t+14t2−9t3+4t4−t5 | (−v−2+3−v2)+(−v−4+v−2+1+v2−v4)*z2+(2v−2−1+2v2)*z4+(−1)*z6 |
10116 | 10a120 | 1−5t+12t2−19t3+21t4−19t5+12t6−5t7+t8 | 1−2z4−3z6−z8 | t−7−4t−6+8t−5−12t−4+15t−3−16t−2+15t−1−11+8t−4t2+t3 | (1)+(2v−4−4v−2+2)*z2+(3v−4−8v−2+3)*z4+(v−4−5v−2+1)*z6+(−v−2)*z8 |
10117 | 10a99 | 2−10*t+24t2−31t3+24t4−10*t5+2t6 | 1+2z2+2z4+2z6 | −t−8+4t−7−9t−6+13t−5−16t−4+18t−3−16t−2+13t−1−8+4t−t2 | (−v−6+v−4+v−2)+(−v−6+2v−4+2v−2−1)*z2+(−v−6+2v−4+2v−2−1)*z4+(v−4+v−2)*z6 |
10118 | 10a88 | 1−5t+12t2−19t3+23t4−19t5+12t6−5t7+t8 | 1+2z4+3z6+z8 | −t−5+4t−4−8t−3+12t−2−15t−1+17−15t+12t2−8t3+4t4−t5 | (1)+(−2v−2+4−2v2)*z2+(−3v−2+8−3v2)*z4+(−v−2+5−v2)*z6+(1)*z8 |
10119 | 10a85 | 2−10*t+23t2−31t3+23t4−10*t5+2t6 | 1−z2−2z4−2z6 | t−6−4t−5+8t−4−12t−3+16t−2−17t−1+16−13t+9t2−4t3+t4 | (v−2−1+v2)+(v−4−v−2−2+v2)*z2+(v−4−2v−2−2+v2)*z4+(−v−2−1)*z6 |
10120 | 10a102 | 8−26t+37t2−26t3+8t4 | 1+6z2+8z4 | t2−4t3+10*t4−13t5+17t6−18t7+16t8−13t9+8t10−4t11+t12 | (3v6−3v10+v12)+(7v6+3v8−4v10)*z2+(v4+4v6+3v8)*z4 |
10121 | 10a90 | 2−11t+27t2−35t3+27t4−11t5+2t6 | 1+z2+z4+2z6 | −t−2+5t−1−10+15t−18t2+20*t3−18t4+14t5−9t6+4t7−t8 | (1−v2+2v4−v6)+(−v2+3v4−v6)*z2+(−1+v2+2v4−v6)*z4+(v2+v4)*z6 |
10122 | 10a89 | 2−11t+24t2−31t3+24t4−11t5+2t6 | 1+2z2−z4−2z6 | t−6−5t−5+9t−4−13t−3+17t−2−17t−1+17−13t+8t2−4t3+t4 | (−2v−4+4v−2−1)+(3v−2−2+v2)*z2+(v−4−v−2−2+v2)*z4+(−v−2−1)*z6 |
10123 | 10a121 | 1−6t+15t2−24t3+29t4−24t5+15t6−6t7+t8 | 1−2z2−z4+2z6+z8 | −t−5+5t−4−10*t−3+15t−2−19t−1+21−19t+15t2−10*t3+5t4−t5 | (2v−2−3+2v2)+(v−2−4+v2)*z2+(−2v−2+3−2v2)*z4+(−v−2+4−v2)*z6+(1)*z8 |
10124 | 10n21 | 1−t+t3−t4+t5−t7+t8 | 1+8z2+14z4+7z6+z8 | t4+t6−t10 | (7v8−8v10+2v12)+(21v8−14v10+v12)*z2+(21v8−7v10)*z4+(8v8−v10)*z6+(v8)*z8 |
10125 | 10n15 | 1−2t+2t2−t3+2t4−2t5+t6 | 1+3z2+4z4+z6 | −t−4+t−3−t−2+2t−1−1+2t−t2+t3−t4 | (−3v−2+7−3v2)+(−4v−2+11−4v2)*z2+(−v−2+6−v2)*z4+(1)*z6 |
10126 | 10n17 | 1−2t+4t2−5t3+4t4−2t5+t6 | 1+5z2+4z4+z6 | −t−8+t−7−2t−6+3t−5−3t−4+4t−3−2t−2+2t−1−1 | (−4v−6+7v−4−2v−2)+(−4v−6+12v−4−3v−2)*z2+(−v−6+6v−4−v−2)*z4+(v−4)*z6 |
10127 | 10n16 | 1−4t+6t2−7t3+6t4−4t5+t6 | 1+z2−2z4−z6 | 2t2−2t3+4t4−5t5+5t6−5t7+3t8−2t9+t10 | (5v4−6v6+2v8)+(7v4−9v6+3v8)*z2+(2v4−5v6+v8)*z4+(−v6)*z6 |
10128 | 10n22 | 2−3t+t2+t3+t4−3t5+2t6 | 1+7z2+9z4+2z6 | t3−t4+2t5−t6+2t7−2t8+t9−t10 | (2v6+2v8−4v10+v12)+(6v6+6v8−5v10)*z2+(5v6+5v8−v10)*z4+(v6+v8)*z6 |
10129 | 10n18 | 2−6t+9t2−6t3+2t4 | 1+2z2+2z4 | −t−3+2t−2−3t−1+5−4t+4t2−3t3+2t4−t5 | (−v−2+2+v2−v4)+(−v−2+2+2v2−v4)*z2+(1+v2)*z4 |
10130 | 10n20 | 2−4t+5t2−4t3+2t4 | 1+4z2+2z4 | −t−7+t−6−2t−5+3t−4−2t−3+3t−2−2t−1+2−t | (−2v−6+2v−4+2v−2−1)+(−v−6+3v−4+3v−2−1)*z2+(v−4+v−2)*z4 |
10131 | 10n19 | 2−8t+11t2−8t3+2t4 | 1−2z4 | 2t−3t2+5t3−5t4+5t5−5t6+3t7−2t8+t9 | (2v2−2v6+v8)+(2v2−v4−2v6+v8)*z2+(−v4−v6)*z4 |
10132 | 10n13 | 1−t+t2−t3+t4 | 1+3z2+z4 | −t−7+t−6−t−5+t−4+t−2 | (−2v−6+3v−4)+(−v−6+4v−4)*z2+(v−4)*z4 |
10133 | 10n4 | 1−5t+7t2−5t3+t4 | 1+z2−z4 | t−t2+3t3−3t4+3t5−3t6+2t7−2t8+t9 | (v2+2v4−3v6+v8)+(v2+2v4−3v6+v8)*z2+(−v6)*z4 |
10134 | 10n6 | 2−4t+4t2−3t3+4t4−4t5+2t6 | 1+6z2+8z4+2z6 | t3−t4+3t5−3t6+4t7−4t8+3t9−3t10+t11 | (3v6−3v10+v12)+(7v6+3v8−4v10)*z2+(5v6+4v8−v10)*z4+(v6+v8)*z6 |
10135 | 10n5 | 3−9t+13t2−9t3+3t4 | 1+3z2+3z4 | −2t−3+4t−2−5t−1+7−6t+6t2−4t3+2t4−t5 | (−2v−2+4−v4)+(−2v−2+5+v2−v4)*z2+(2+v2)*z4 |
10136 | 10n3 | 1−4t+5t2−4t3+t4 | 1−z4 | −t−4+2t−3−2t−2+3t−1−2+2t−2t2+t3 | (−v−4+3v−2−2+v2)+(2v−2−3+v2)*z2+(−1)*z4 |
10137 | 10n2 | 1−6t+11t2−6t3+t4 | 1−2z2+z4 | t−2−2t−1+4−4t+4t2−4t3+3t4−2t5+t6 | (v−2−1+2v2−2v4+v6)+(−2+2v2−2v4)*z2+(v2)*z4 |
10138 | 10n1 | 1−5t+8t2−7t3+8t4−5t5+t6 | 1−3z2+z4+z6 | t−3−2t−2+4t−1−5+6t−6t2+5t3−4t4+2t5 | (2v−2−3+3v2−2v4+v6)+(v−2−6+5v2−3v4)*z2+(−2+4v2−v4)*z4+(v2)*z6 |
10139 | 10n27 | 1−t+2t3−3t4+2t5−t7+t8 | 1+9z2+14z4+7z6+z8 | t4+t6−t8+t9−t10+t11−t12 | (6v8−6v10+v12)+(21v8−13v10+v12)*z2+(21v8−7v10)*z4+(8v8−v10)*z6+(v8)*z8 |
10140 | 10n29 | 1−2t+3t2−2t3+t4 | 1+2z2+z4 | 1−t+t2−t3+2t4−t5+t6−t7 | (1−2v2+4v4−2v6)+(−v2+4v4−v6)*z2+(v4)*z4 |
10141 | 10n25 | 1−3t+4t2−5t3+4t4−3t5+t6 | 1−z2−3z4−z6 | t−2−2t−1+3−3t+4t2−3t3+2t4−2t5+t6 | (2−2v2+v4)+(3−7v2+3v4)*z2+(1−5v2+v4)*z4+(−v2)*z6 |
10142 | 10n30 | 2−3t+2t2−t3+2t4−3t5+2t6 | 1+8z2+9z4+2z6 | t3−t4+2t5−2t6+3t7−2t8+2t9−2t10 | (v6+4v8−5v10+v12)+(6v6+7v8−5v10)*z2+(5v6+5v8−v10)*z4+(v6+v8)*z6 |
10143 | 10n26 | 1−3t+6t2−7t3+6t4−3t5+t6 | 1+3z2+3z4+z6 | −t−8+2t−7−3t−6+4t−5−5t−4+5t−3−3t−2+3t−1−1 | (−2v−6+3v−4)+(−3v−6+8v−4−2v−2)*z2+(−v−6+5v−4−v−2)*z4+(v−4)*z6 |
10144 | 10n28 | 3−10*t+13t2−10*t3+3t4 | 1−2z2−3z4 | 2t−1−3+5t−7t2+7t3−6t4+5t5−3t6+t7 | (3−4v2+2v4)+(2−5v2+v6)*z2+(−2v2−v4)*z4 |
10145 | 10n14 | 1+t−3t2+t3+t4 | 1+5z2+z4 | −t−10+t−9−t−8+t−7+t−2 | (−v−10+v−8−v−6+2v−4)+(v−8+4v−4)*z2+(v−4)*z4 |
10146 | 10n23 | 2−8t+13t2−8t3+2t4 | 1+2z4 | −t−5+3t−4−4t−3+5t−2−6t−1+6−4t+3t2−t3 | (1)+(−v−4+v−2+1−v2)*z2+(v−2+1)*z4 |
10147 | 10n24 | 2−7t+9t2−7t3+2t4 | 1−z2−2z4 | t−3−2t−2+3t−1−4+5t−4t2+4t3−3t4+t5 | (v−2−1+v2)+(v−2−2−v2+v4)*z2+(−1−v2)*z4 |
10148 | 10n12 | 1−3t+7t2−9t3+7t4−3t5+t6 | 1+4z2+3z4+z6 | −t−8+2t−7−4t−6+5t−5−5t−4+6t−3−4t−2+3t−1−1 | (−3v−6+5v−4−v−2)+(−3v−6+9v−4−2v−2)*z2+(−v−6+5v−4−v−2)*z4+(v−4)*z6 |
10149 | 10n11 | 1−5t+9t2−11t3+9t4−5t5+t6 | 1+2z2−z4−z6 | 2t2−3t3+6t4−7t5+7t6−7t7+5t8−3t9+t10 | (4v4−4v6+v8)+(6v4−6v6+2v8)*z2+(2v4−4v6+v8)*z4+(−v6)*z6 |
10150 | 10n9 | 1−4t+6t2−7t3+6t4−4t5+t6 | 1+z2−2z4−z6 | 1−2t+4t2−4t3+5t4−5t5+4t6−3t7+t8 | (2v2−v4)+(3v2−4v4+2v6)*z2+(v2−4v4+v6)*z4+(−v4)*z6 |
10151 | 10n8 | 1−4t+10*t2−13t3+10*t4−4t5+t6 | 1+3z2+2z4+z6 | −2t−6+4t−5−6t−4+8t−3−7t−2+7t−1−5+3t−t2 | (−v−6+3v−2−1)+(−v−4+6v−2−2)*z2+(−v−4+4v−2−1)*z4+(v−2)*z6 |
10152 | 10n36 | 1−t−t2+4t3−5t4+4t5−t6−t7+t8 | 1+7z2+13z4+7z6+z8 | t4+t6+t7−2t8+2t9−3t10+2t11−2t12+t13 | (8v8−10*v10+3v12)+(22v8−17v10+2v12)*z2+(21v8−8v10)*z4+(8v8−v10)*z6+(v8)*z8 |
10153 | 10n10 | 1−t−t2+3t3−t4−t5+t6 | 1+4z2+5z4+z6 | −t−5+t−4−t−3+t−2+1+t−t2+t3−t4 | (−v−4−v−2+6−3v2)+(−v−4−v−2+10−4v2)*z2+(6−v2)*z4+(1)*z6 |
10154 | 10n7 | 1−4t2+7t3−4t4+t6 | 1+5z2+6z4+z6 | t3+2t6−2t7+2t8−3t9+2t10−2t11+t12 | (4v6−2v8−2v10+v12)+(9v6−2v8−2v10)*z2+(6v6)*z4+(v6)*z6 |
10155 | 10n39 | 1−3t+5t2−7t3+5t4−3t5+t6 | 1−2z2−3z4−z6 | t−6−2t−5+3t−4−4t−3+4t−2−4t−1+4−2t+t2 | (2v−4−4v−2+3)+(3v−4−8v−2+3)*z2+(v−4−5v−2+1)*z4+(−v−2)*z6 |
10156 | 10n32 | 1−4t+8t2−9t3+8t4−4t5+t6 | 1+z2+2z4+z6 | −t−6+3t−5−5t−4+6t−3−6t−2+6t−1−4+3t−t2 | (−v−4+2v−2)+(−2v−4+5v−2−2)*z2+(−v−4+4v−2−1)*z4+(v−2)*z6 |
10157 | 10n42 | 1−6t+11t2−13t3+11t4−6t5+t6 | 1+4z2−z6 | t−10−4t−9+6t−8−8t−7+9t−6−8t−5+7t−4−4t−3+2t−2 | (−v−8+2v−4)+(v−8−2v−6+5v−4)*z2+(v−8−3v−6+2v−4)*z4+(−v−6)*z6 |
10158 | 10n41 | 1−4t+10*t2−15t3+10*t4−4t5+t6 | 1−3z2−2z4−z6 | t−4−3t−3+6t−2−7t−1+8−8t+6t2−4t3+2t4 | (2v−2−2+v4)+(2v−2−6+v2)*z2+(v−2−4+v2)*z4+(−1)*z6 |
10159 | 10n34 | 1−4t+9t2−11t3+9t4−4t5+t6 | 1+2z2+2z4+z6 | −1+4t−5t2+7t3−7t4+6t5−5t6+3t7−t8 | (v2+v4−v6)+(−v2+5v4−2v6)*z2+(−v2+4v4−v6)*z4+(v4)*z6 |
10160 | 10n33 | 1−4t+4t2−3t3+4t4−4t5+t6 | 1+3z2−2z4−z6 | 1−2t+3t2−3t3+4t4−3t5+3t6−2t7 | (v2+v6−v8)+(3v2−3v4+3v6)*z2+(v2−4v4+v6)*z4+(−v4)*z6 |
10161 | 10n31 | 1−2t2+3t3−2t4+t6 | 1+7z2+6z4+z6 | t3+t6−t7+t8−t9+t10−t11 | (3v6−v8−v10)+(9v6−v8−v10)*z2+(6v6)*z4+(v6)*z6 |
10162 | 10n40 | 3−9t+11t2−9t3+3t4 | 1−3z2−3z4 | t−7−2t−6+4t−5−6t−4+6t−3−6t−2+5t−1−3+2t | (v−6−3v−2+3)+(v−6−v−4−5v−2+2)*z2+(−v−4−2v−2)*z4 |
10163 | 10n35 | 1−5t+12t2−15t3+12t4−5t5+t6 | 1+z2+z4+z6 | −t−2+4t−1−6+8t−9t2+9t3−7t4+5t5−2t6 | (1−v2+2v4−v6)+(−1+2v2)*z2+(−1+3v2−v4)*z4+(v2)*z6 |
10164 | 10n38 | 3−11t+17t2−11t3+3t4 | 1+z2+3z4 | −t−5+3t−4−5t−3+7t−2−8t−1+8−6t+5t2−2t3 | (−v−2+3−v2)+(−v−4+4−2v2)*z2+(v−2+2)*z4 |
10165 | 10n37 | 2−10*t+15t2−10*t3+2t4 | 1+2z2−2z4 | t−9−3t−8+4t−7−6t−6+7t−5−6t−4+6t−3−4t−2+2t−1 | (−v−6+v−4+v−2)+(v−8−v−6+2v−2)*z2+(−v−6−v−4)*z4 |