Jump to content

Wiener algebra

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by JCW-CleanerBot (talk | contribs) at 00:55, 15 August 2018 (→‎References: task, replaced: Annals of Math. → Annals of Mathematics, Annals of Math → Annals of Mathematics, Annals of Mathematicsematics → Annals of Mathematics using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the Wiener algebra, named after Norbert Wiener and usually denoted by A(T), is the space of absolutely convergent Fourier series.[1] Here T denotes the circle group.

Banach algebra structure

The norm of a function f ∈ A(T) is given by

where

is the nth Fourier coefficient of f. The Wiener algebra A(T) is closed under pointwise multiplication of functions. Indeed,

therefore

Thus the Wiener algebra is a commutative unitary Banach algebra. Also, A(T) is isomorphic to the Banach algebra l1(Z), with the isomorphism given by the Fourier transform.

Properties

The sum of an absolutely convergent Fourier series is continuous, so

where C(T) is the ring of continuous functions on the unit circle.

On the other hand an integration by parts, together with the Cauchy–Schwarz inequality and Parseval's formula, shows that

More generally,

for (see Katznelson (2004)).

Wiener's 1/f theorem

Wiener (1932, 1933) proved that if f has absolutely convergent Fourier series and is never zero, then its inverse 1/f also has an absolutely convergent Fourier series. Many other proofs have appeared since then, including an elementary one by Newman (1975).

Gelfand (1941, 1941b) used the theory of Banach algebras that he developed to show that the maximal ideals of A(T) are of the form

which is equivalent to Wiener's theorem.

See also

Notes

  1. ^ Moslehian, M.S. "Wiener algebra". MathWorld. {{cite web}}: More than one of |author= and |last= specified (help)

References