( x y z ) ′ = ( − 10 10 0 b − 1 0 0 0 − 8 / 3 ) ( x y z ) . {\displaystyle {\begin{pmatrix}x\\y\\z\end{pmatrix}}'={\begin{pmatrix}-10&10&0\\b&-1&0\\0&0&-8/3\end{pmatrix}}{\begin{pmatrix}x\\y\\z\end{pmatrix}}.}
| − 10 − λ 10 0 b − 1 − λ 0 0 0 − 8 / 3 − λ | = − ( 8 / 3 + λ ) [ λ 2 + 11 λ − 10 ( b − 1 ) ] = 0. {\displaystyle {\begin{vmatrix}-10-\lambda &10&0\\b&-1-\lambda &0\\0&0&-8/3-\lambda \end{vmatrix}}=-(8/3+\lambda )[\lambda ^{2}+11\lambda -10(b-1)]=0.}
λ 1 = − 8 3 , λ 2 = − 11 − 81 + 40 b 2 , λ 3 = − 11 + 81 + 40 b 2 {\displaystyle \lambda _{1}=-{\frac {8}{3}},\lambda _{2}={\frac {-11-{\sqrt {81+40b}}}{2}},\lambda _{3}={\frac {-11+{\sqrt {81+40b}}}{2}}}
( u v w ) ′ = ( − 10 10 0 1 − 1 − 8 ( b − 1 ) / 3 8 ( b − 1 ) / 3 8 ( b − 1 ) / 3 − 8 / 3 ) ( u v w ) . {\displaystyle {\begin{pmatrix}u\\v\\w\end{pmatrix}}'={\begin{pmatrix}-10&10&0\\1&-1&-{\sqrt {8(b-1)/3}}\\{\sqrt {8(b-1)/3}}&{\sqrt {8(b-1)/3}}&-8/3\end{pmatrix}}{\begin{pmatrix}u\\v\\w\end{pmatrix}}.}