Optogenetic methods to record cellular activity: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
This is a new page in order to split up the 'Optogenetics' main page into actuators (main page) and sensors (this page).
(No difference)

Revision as of 20:58, 26 October 2021

The term Optogenetics has originally been coined for methods to alter neuronal activity with light, using e.g. channelrhodopsins. In a broader sense, optogenetic approaches also include the use of genetically encoded biosensors to monitor the activity of neurons or other cell types by measuring fluorescence or bioluminescence. Genetically encoded calcium indicators (GECIs) are used frequently to monitor neuronal activity, but other cellular parameters such as membrane voltage or second messenger activity can also be recorded optically. The use of optogenetic sensors is not restricted to neuroscience, but plays increasingly important roles in immunology, cardiology and cancer research.

Advantages of optogenetic sensors

  • can be targeted to specific classes of cells (e.g. astrocytes or pyramidal cells). This allows for optical read-out without spatial resolution, e.g. fiber photometry from deep brain areas.[1]
  • can be targeted to sub-cellular compartments (e.g. synapses, organelles, nucleus) by fusing the indicator protein with specific anchoring domains, retention signals or intrabodies.
  • work in a variety of species (insects, mammals, fish) and in cell culture systems (FLIPR assay)
  • can be delivered by viral vectors (e.g. rAAV)

Drawbacks, limitations

  • will buffer the measured ion or protein, potentially interfering with cellular signaling
  • are subject to photobleaching, compromising long-term measurements
  • can be toxic when expressed at very high concentration
  • require highly sensitive cameras or laser scanning microscopes
  • most indicators are green fluorescent, making it difficult to measure several cellular parameters simultaneously (multiplexing).

Classes of genetically encoded indicators

Indicators have been designed to measure ion concentrations, membrane potential, neurotransmitters, and various intracellular signaling molecules. The following list provides only examples for each class; many more have been published.

References

  1. ^ Jones-Tabah, Jace; Mohammad, Hanan; Hadj-Youssef, Shadi; Kim, Lucy E. H.; Martin, Ryan D.; Benaliouad, Faïza; Tanny, Jason C.; Clarke, Paul B. S.; Hébert, Terence E. (2020-09-02). "Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors". Scientific Reports. 10 (1): 14426. doi:10.1038/s41598-020-71121-8. ISSN 2045-2322. PMC 7468292. PMID 32879346.{{cite journal}}: CS1 maint: PMC format (link)
  2. ^ Zhang, Yan; Rózsa, Márton; Bushey, Daniel; Jihong Zheng; Reep, Daniel; Yajie Liang; Broussard, Gerard Joey; Tsang, Arthur; Getahun Tsegaye; Patel, Ronak; Sujatha Narayan (2020). "jGCaMP8 Fast Genetically Encoded Calcium Indicators": 361685 Bytes. doi:10.25378/JANELIA.13148243. {{cite journal}}: Cite journal requires |journal= (help)
  3. ^ Berglund, Ken; Schleich, Wolfram; Wang, Hong; Feng, Guoping; Hall, William C.; Kuner, Thomas; Augustine, George J. (2008). "Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon". Brain Cell Biology. 36 (1–4): 101–118. doi:10.1007/s11068-008-9031-x. ISSN 1559-7105. PMC 2674236. PMID 18850274.{{cite journal}}: CS1 maint: PMC format (link)
  4. ^ Han, Junyan; Burgess, Kevin (2009-10-16). "Fluorescent Indicators for Intracellular pH". Chemical Reviews. 110 (5): 2709–2728. doi:10.1021/cr900249z. ISSN 0009-2665.
  5. ^ Jin, Lei; Han, Zhou; Platisa, Jelena; Wooltorton, Julian R.A.; Cohen, Lawrence B.; Pieribone, Vincent A. (2012). "Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe". Neuron. 75 (5): 779–785. doi:10.1016/j.neuron.2012.06.040. PMC 3439164. PMID 22958819.{{cite journal}}: CS1 maint: PMC format (link)
  6. ^ Granseth, Björn; Odermatt, Benjamin; Royle, Stephen J.; Lagnado, Leon (2006). "Clathrin-Mediated Endocytosis Is the Dominant Mechanism of Vesicle Retrieval at Hippocampal Synapses". Neuron. 51 (6): 773–786. doi:10.1016/j.neuron.2006.08.029.
  7. ^ Marvin, Jonathan S.; Scholl, Benjamin; Wilson, Daniel E.; Podgorski, Kaspar; Kazemipour, Abbas; Müller, Johannes Alexander; Schoch, Susanne; Quiroz, Francisco José Urra; Rebola, Nelson; Bao, Huan; Little, Justin P. (2018). "Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR". Nature Methods. 15 (11): 936–939. doi:10.1038/s41592-018-0171-3. ISSN 1548-7105. PMC 6394230. PMID 30377363.
  8. ^ Marvin, Jonathan S.; Shimoda, Yoshiteru; Magloire, Vincent; Leite, Marco; Kawashima, Takashi; Jensen, Thomas P.; Kolb, Ilya; Knott, Erika L.; Novak, Ondrej; Podgorski, Kaspar; Leidenheimer, Nancy J. (2019). "A genetically encoded fluorescent sensor for in vivo imaging of GABA". Nature Methods. 16 (8): 763–770. doi:10.1038/s41592-019-0471-2. ISSN 1548-7105.
  9. ^ Patriarchi, Tommaso; Cho, Jounhong Ryan; Merten, Katharina; Howe, Mark W.; Marley, Aaron; Xiong, Wei-Hong; Folk, Robert W.; Broussard, Gerard Joey; Liang, Ruqiang; Jang, Min Jee; Zhong, Haining (2018-06-29). "Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors". Science. 360 (6396): eaat4422. doi:10.1126/science.aat4422. ISSN 0036-8075. PMC 6287765. PMID 29853555.{{cite journal}}: CS1 maint: PMC format (link)
  10. ^ Labouesse, Marie A.; Cola, Reto B.; Patriarchi, Tommaso (2020-10-28). "GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for In Vivo Imaging". International Journal of Molecular Sciences. 21 (21): 8048. doi:10.3390/ijms21218048. ISSN 1422-0067. PMC 7672611. PMID 33126757.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  11. ^ Wan, Jinxia; Peng, Wanling; Li, Xuelin; Qian, Tongrui; Song, Kun; Zeng, Jianzhi; Deng, Fei; Hao, Suyu; Feng, Jiesi; Zhang, Peng; Zhang, Yajun (2021). "A genetically encoded sensor for measuring serotonin dynamics". Nature Neuroscience. 24 (5): 746–752. doi:10.1038/s41593-021-00823-7. ISSN 1546-1726. PMC 8544647. PMID 33821000.{{cite journal}}: CS1 maint: PMC format (link)
  12. ^ Yaginuma, Hideyuki; Okada, Yasushi (2021-10-09). "Live cell imaging of metabolic heterogeneity by quantitative fluorescent ATP indicator protein, QUEEN-37C": 2021.10.08.463131. doi:10.1101/2021.10.08.463131. {{cite journal}}: Cite journal requires |journal= (help)
  13. ^ Klarenbeek, Jeffrey; Goedhart, Joachim; Batenburg, Aernoud van; Groenewald, Daniella; Jalink, Kees (2015-04-14). "Fourth-Generation Epac-Based FRET Sensors for cAMP Feature Exceptional Brightness, Photostability and Dynamic Range: Characterization of Dedicated Sensors for FLIM, for Ratiometry and with High Affinity". PLOS ONE. 10 (4): e0122513. doi:10.1371/journal.pone.0122513. ISSN 1932-6203. PMC 4397040. PMID 25875503.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  14. ^ Lee, Seok-Jin R.; Escobedo-Lozoya, Yasmin; Szatmari, Erzsebet M.; Yasuda, Ryohei (2009). "Activation of CaMKII in single dendritic spines during long-term potentiation". Nature. 458 (7236): 299–304. doi:10.1038/nature07842. ISSN 0028-0836. PMC 2719773. PMID 19295602.{{cite journal}}: CS1 maint: PMC format (link)
  15. ^ Oliveira, Ana F.; Yasuda, Ryohei (2013-01-14). "An Improved Ras Sensor for Highly Sensitive and Quantitative FRET-FLIM Imaging". PLOS ONE. 8 (1): e52874. doi:10.1371/journal.pone.0052874. ISSN 1932-6203. PMC 3544822. PMID 23349692.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)