Bismuth-209: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Uses: Added referenced facts
→‎Uses: Added referenced facts
Line 47: Line 47:


==Uses==
==Uses==
[[Polonium-210|<sup>210</sup>Po]] can be manufactured by bombarding <sup>209</sup>Bi with [[neutron]]s in a nuclear reactor. Only some 100&nbsp;grams of <sup>210</sup>Po are produced each year.<ref>{{cite web |url = http://www.aljazeera.com/investigations/killing-arafat/swiss-study-polonium-found-arafats-bones-201311522578803512.html |title = Swiss study: Polonium found in Arafat's bones | publisher = Al Jazeera| access-date = 2013-11-07}}</ref> [[Astatine]] can also be produced by bombarding <sup>209</sup>Bi with alpha particles. Bismuth-209 has been used as a target for the creation of several [[superheavy element]]s such as [[nihonium]].<ref name="Nh278 04Mo01">{{cite journal|title=Experiment on the Synthesis of Element 113 in the Reaction <sup>209</sup>Bi(<sup>70</sup>Zn, n)<sup>278</sup>113|doi=10.1143/JPSJ.73.2593|year=2004|last=Morita |first=Kosuke |journal=Journal of the Physical Society of Japan |volume=73 |pages=2593–2596 |last2=Morimoto |first2=Kouji |last3=Kaji |first3=Daiya |last4=Akiyama |first4=Takahiro |last5=Goto |first5=Sin-Ichi |last6=Haba |first6=Hiromitsu |last7=Ideguchi |first7=Eiji |last8=Kanungo |first8=Rituparna |last9=Katori |first9=Kenji |last10=Koura |first10=Hiroyuki |last11=Kudo |first11=Hisaaki |last12=Ohnishi |first12=Tetsuya |last13=Ozawa |first13=Akira |last14=Suda |first14=Toshimi |last15=Sueki |first15=Keisuke |last16=Xu |first16=Hushan |last17=Yamaguchi |first17=Takayuki |last18=Yoneda |first18=Akira |last19=Yoshida |first19=Atsushi |last20=Zhao |first20=Yuliang |display-authors=8 |issue=10 |bibcode = 2004JPSJ...73.2593M |doi-access=free }}</ref><ref name="JWP Nh278">{{cite journal |last=Barber |first=Robert C. |last2=Karol |first2=Paul J |last3=Nakahara |first3=Hiromichi |last4=Vardaci |first4=Emanuele |last5=Vogt |first5=Erich W. |title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|doi=10.1351/PAC-REP-10-05-01 |journal=Pure and Applied Chemistry |year=2011 |volume=83|issue=7 |page=1485|doi-access=free }}</ref><ref name="six-alpha Nh278">{{cite journal|journal=Journal of the Physical Society of Japan|volume=81|pages=103201 |date=2012|title=New Results in the Production and Decay of an Isotope, <sup>278</sup>113, of the 113th Element|author=K. Morita|doi=10.1143/JPSJ.81.103201|last2=Morimoto|first2=Kouji|last3=Kaji|first3=Daiya|last4=Haba|first4=Hiromitsu|last5=Ozeki|first5=Kazutaka|last6=Kudou|first6=Yuki|last7=Sumita|first7=Takayuki|last8=Wakabayashi|first8=Yasuo|last9=Yoneda|first9=Akira|first10=Kengo |last10=Tanaka|first11=Sayaka |last11=Yamaki|first12=Ryutaro |last12=Sakai|first13=Takahiro |last13=Akiyama|first14=Shin-ichi |last14=Goto|first15=Hiroo |last15=Hasebe|first16=Minghui |last16=Huang|first17=Tianheng |last17=Huang|first18=Eiji |last18=Ideguchi|first19=Yoshitaka |last19=Kasamatsu|first20=Kenji |last20=Katori|first21=Yoshiki |last21=Kariya|first22=Hidetoshi |last22=Kikunaga|first23=Hiroyuki |last23=Koura|first24=Hisaaki |last24=Kudo|first25=Akihiro |last25=Mashiko|first26=Keita |last26=Mayama|first27=Shin-ichi |last27=Mitsuoka|first28=Toru |last28=Moriya|first29=Masashi |last29=Murakami|first30=Hirohumi |last30=Murayama|first31=Saori |last31=Namai|first32=Akira |last32=Ozawa|first33=Nozomi |last33=Sato|first34=Keisuke |last34=Sueki|first35=Mirei |last35=Takeyama|first36=Fuyuki |last36=Tokanai|first37=Takayuki |last37=Yamaguchi|first38=Atsushi |last38=Yoshida
[[Polonium-210|<sup>210</sup>Po]] can be manufactured by bombarding <sup>209</sup>Bi with [[neutron]]s in a nuclear reactor. Only some 100&nbsp;grams of <sup>210</sup>Po are produced each year.<ref>{{cite web |url = http://www.aljazeera.com/investigations/killing-arafat/swiss-study-polonium-found-arafats-bones-201311522578803512.html |title = Swiss study: Polonium found in Arafat's bones | publisher = Al Jazeera| access-date = 2013-11-07}}</ref> [[Astatine]] can also be produced by bombarding <sup>209</sup>Bi with alpha particles. Bismuth-209 has been used as a target for the creation of several [[superheavy element]]s such as [[roentgenium]]<ref name="Rg27295Ho01">{{Cite journal |doi=10.1007/BF01291182 |title=The new element 111 |year=1995 |last1=Hofmann |first1=S. |journal=Zeitschrift für Physik A |volume=350 |pages=281–282 |last2=Ninov |first2=V. |last3=Heßberger |first3=F. P. |last4=Armbruster |first4=P. |last5=Folger |first5=H. |last6=Münzenberg |first6=G. |last7=Schött |first7=H. J. |last8=Popeko |first8=A. G. |last9=Yeremin |first9=A. V. |last10=Andreyev |first10=A. N. |last11=Saro |first11=S. |last12=Janik |first12=R. |last13=Leino |first13=M. |bibcode = 1995ZPhyA.350..281H |issue=4 |s2cid=18804192 |display-authors=8|url=https://www.semanticscholar.org/paper/f35629b9327d47237154154a0eca3cc9965e37cd }}</ref><ref name="Rg27202Ho01">{{Cite journal |doi=10.1140/epja/i2001-10119-x |title=New results on elements 111 and 112 |year=2002 |last1=Hofmann |first1=S. |journal=The European Physical Journal A |volume=14 |pages=147–157 |last2=Heßberger |first2=F. P. |last3=Ackermann |first3=D. |last4=Münzenberg |first4=G. |last5=Antalic |first5=S. |last6=Cagarda |first6=P. |last7=Kindler |first7=B. |last8=Kojouharova |first8=J. |last9=Leino |first9=M. |last10=Lommel |first10=B. |last11=Mann |first11=R. |last12=Popeko |first12=A.G. |last13=Reshitko |first13=S. |last14=Śaro |first14=S. |last15=Uusitalo |first15=J. |last16=Yeremin |first16=A.V. |issue=2 |display-authors=8|bibcode=2002EPJA...14..147H |s2cid=8773326 |url=https://www.semanticscholar.org/paper/ed909c3ab6d8aa13a3a8e2b4567d6be5ceedb3e3 }}</ref><ref name="MoritaRg272">{{cite journal |last1=Morita |first1=K. |last2=Morimoto |first2=K. K. |last3=Kaji |first3=D. |last4=Goto |first4=S. |last5=Haba |first5=H. |last6=Ideguchi |first6=E. |last7=Kanungo |first7=R. |last8=Katori |first8=K. |last9=Koura |first9=H. |last10=Kudo |first10=H. |last11=Ohnishi |first11=T. |last12=Ozawa |first12=A. |last13=Peter |first13=J. C. |last14=Suda |first14=T. |last15=Sueki |first15=K. |last16=Tanihata |first16=I. |last17=Tokanai |first17=F. |last18=Xu |first18=H. |last19=Yeremin |first19=A. V. |last20=Yoneda |first20=A. |last21=Yoshida |first21=A. |last22=Zhao |first22=Y.-L. |last23=Zheng |first23=T. |title=Status of heavy element research using GARIS at RIKEN |year=2004 |journal=Nuclear Physics A |volume=734 |pages=101–108 |doi=10.1016/j.nuclphysa.2004.01.019|bibcode=2004NuPhA.734..101M }}</ref> and [[nihonium]].<ref name="Nh278 04Mo01">{{cite journal|title=Experiment on the Synthesis of Element 113 in the Reaction <sup>209</sup>Bi(<sup>70</sup>Zn, n)<sup>278</sup>113|doi=10.1143/JPSJ.73.2593|year=2004|last=Morita |first=Kosuke |journal=Journal of the Physical Society of Japan |volume=73 |pages=2593–2596 |last2=Morimoto |first2=Kouji |last3=Kaji |first3=Daiya |last4=Akiyama |first4=Takahiro |last5=Goto |first5=Sin-Ichi |last6=Haba |first6=Hiromitsu |last7=Ideguchi |first7=Eiji |last8=Kanungo |first8=Rituparna |last9=Katori |first9=Kenji |last10=Koura |first10=Hiroyuki |last11=Kudo |first11=Hisaaki |last12=Ohnishi |first12=Tetsuya |last13=Ozawa |first13=Akira |last14=Suda |first14=Toshimi |last15=Sueki |first15=Keisuke |last16=Xu |first16=Hushan |last17=Yamaguchi |first17=Takayuki |last18=Yoneda |first18=Akira |last19=Yoshida |first19=Atsushi |last20=Zhao |first20=Yuliang |display-authors=8 |issue=10 |bibcode = 2004JPSJ...73.2593M |doi-access=free }}</ref><ref name="JWP Nh278">{{cite journal |last=Barber |first=Robert C. |last2=Karol |first2=Paul J |last3=Nakahara |first3=Hiromichi |last4=Vardaci |first4=Emanuele |last5=Vogt |first5=Erich W. |title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|doi=10.1351/PAC-REP-10-05-01 |journal=Pure and Applied Chemistry |year=2011 |volume=83|issue=7 |page=1485|doi-access=free }}</ref><ref name="six-alpha Nh278">{{cite journal|journal=Journal of the Physical Society of Japan|volume=81|pages=103201 |date=2012|title=New Results in the Production and Decay of an Isotope, <sup>278</sup>113, of the 113th Element|author=K. Morita|doi=10.1143/JPSJ.81.103201|last2=Morimoto|first2=Kouji|last3=Kaji|first3=Daiya|last4=Haba|first4=Hiromitsu|last5=Ozeki|first5=Kazutaka|last6=Kudou|first6=Yuki|last7=Sumita|first7=Takayuki|last8=Wakabayashi|first8=Yasuo|last9=Yoneda|first9=Akira|first10=Kengo |last10=Tanaka|first11=Sayaka |last11=Yamaki|first12=Ryutaro |last12=Sakai|first13=Takahiro |last13=Akiyama|first14=Shin-ichi |last14=Goto|first15=Hiroo |last15=Hasebe|first16=Minghui |last16=Huang|first17=Tianheng |last17=Huang|first18=Eiji |last18=Ideguchi|first19=Yoshitaka |last19=Kasamatsu|first20=Kenji |last20=Katori|first21=Yoshiki |last21=Kariya|first22=Hidetoshi |last22=Kikunaga|first23=Hiroyuki |last23=Koura|first24=Hisaaki |last24=Kudo|first25=Akihiro |last25=Mashiko|first26=Keita |last26=Mayama|first27=Shin-ichi |last27=Mitsuoka|first28=Toru |last28=Moriya|first29=Masashi |last29=Murakami|first30=Hirohumi |last30=Murayama|first31=Saori |last31=Namai|first32=Akira |last32=Ozawa|first33=Nozomi |last33=Sato|first34=Keisuke |last34=Sueki|first35=Mirei |last35=Takeyama|first36=Fuyuki |last36=Tokanai|first37=Takayuki |last37=Yamaguchi|first38=Atsushi |last38=Yoshida
|issue=10|display-authors=10|arxiv = 1209.6431 |bibcode = 2012JPSJ...81j3201M }}</ref>
|issue=10|display-authors=10|arxiv = 1209.6431 |bibcode = 2012JPSJ...81j3201M }}</ref>



Revision as of 17:42, 21 October 2022

Bismuth-209, 209Bi
General
Symbol209Bi
Namesbismuth-209, 209Bi, Bi-209
Protons (Z)83
Neutrons (N)126
Nuclide data
Natural abundance100%
Half-life (t1/2)2.01×1019 years[1]
Isotope mass208.9803987 Da
Spin9/2−
Excess energy−18258.461±2.4 keV
Binding energy7847.987±1.7 keV
Parent isotopes209Pb (β)
209Po (β+)
213At (α)
Decay products205Tl
Decay modes
Decay modeDecay energy (MeV)
Alpha emission3.1373
Isotopes of bismuth
Complete table of nuclides

Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass units). Primordial bismuth consists entirely of this isotope.

Decay properties

Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that 209Bi undergoes alpha decay with a half-life of approximately 19 exayears (1.9×1019, approximately 19 quintillion years), over a billion times longer than the current estimated age of the universe. The heaviest nucleus considered to be stable is now lead-208 and the heaviest stable monoisotopic element is gold as the 197Au isotope.

Theory had previously predicted a half-life of 4.6×1019 years. The decay event produces a 3.14 MeV alpha particle and converts the atom to thallium-205.[2][3]

Bismuth-209 will eventually form 205Tl if unperturbed:

209
83
Bi
205
81
Tl
+ 4
2
He
[4]

If perturbed, it would join in lead-bismuth neutron capture cycle from lead-206/207/208 to bismuth-209, despite low capture cross sections. Even in thallium-205 case above, once fully ionized, again reverts to lead.

Due to its extraordinarily long half-life, for nearly all applications 209Bi can still be treated as if it were non-radioactive. Its radioactivity is much slighter than that of human flesh, so it poses no meaningful hazard from radiation. Although 209Bi holds the half-life record for alpha decay, bismuth does not have the longest half-life of any radionuclide to be found experimentally—this distinction belongs to tellurium-128 (128Te) with a half-life estimated at 7.7 × 1024 years by double β-decay (double beta decay).[5]

The half-life of bismuth-209 was confirmed in 2012 by an Italian team in Gran Sasso who reported (2.01±0.08)×1019 years. They also reported an even longer half-life for alpha decay of bismuth-209 to the first excited state of thallium-205 (at 204 keV), was estimated to be 1.66×1021 years.[6] Even though this value is shorter than the measured half-life of tellurium-128, both alpha decays of bismuth-209 hold the record of the thinnest natural line widths of any measurable physical excitation, estimated respectively at ΔΕ~5.5×10−43 eV and ΔΕ~1.3×10−44 eV in application of the uncertainty principle of Heisenberg[7] (double beta decay would produce energy lines only in neutrinoless transitions, which has not been observed yet).

Uses

210Po can be manufactured by bombarding 209Bi with neutrons in a nuclear reactor. Only some 100 grams of 210Po are produced each year.[8] Astatine can also be produced by bombarding 209Bi with alpha particles. Bismuth-209 has been used as a target for the creation of several superheavy elements such as roentgenium[9][10][11] and nihonium.[12][13][14]

Formation

In the red giant stars of the asymptotic giant branch, the s-process (slow process) is ongoing to produce bismuth-209 and polonium-210 by neutron capture as the heaviest elements to be formed, and the latter quickly decays. All elements heavier than it are formed in the r-process, or rapid process, which occurs during the first fifteen minutes of supernovas.[15]

See also

Notes

Lighter:
bismuth-208
Bismuth-209 is an
isotope of bismuth
Heavier:
bismuth-210
Decay product of:
astatine-213 (α)
polonium-209 (β+)
lead-209 (β)
Decay chain
of bismuth-209
Decays to:
thallium-205 (α)

References

  1. ^ Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  2. ^ Dumé, Belle (2003-04-23). "Bismuth breaks half-life record for alpha decay". Physicsweb.
  3. ^ Marcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc; Jean-Pierre Moalic (April 2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  4. ^ "Isotope data for americium-241 in the Periodic Table".
  5. ^ "Noble Gas Research". Archived from the original on 2011-09-28. Retrieved 2013-01-10. Tellurium-128 information and half-life. Accessed July 14, 2009.
  6. ^ J.W. Beeman; et al. (2012). "First Measurement of the Partial Widths of 209Bi Decay to the Ground and to the First Excited States". Physical Review Letters. 108 (6): 062501. arXiv:1110.3138. doi:10.1103/PhysRevLett.108.062501. PMID 22401058. S2CID 118686992.
  7. ^ "Particle lifetimes from the uncertainty principle".
  8. ^ "Swiss study: Polonium found in Arafat's bones". Al Jazeera. Retrieved 2013-11-07.
  9. ^ Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; et al. (1995). "The new element 111". Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192.
  10. ^ Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; et al. (2002). "New results on elements 111 and 112". The European Physical Journal A. 14 (2): 147–157. Bibcode:2002EPJA...14..147H. doi:10.1140/epja/i2001-10119-x. S2CID 8773326.
  11. ^ Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Peter, J. C.; Suda, T.; Sueki, K.; Tanihata, I.; Tokanai, F.; Xu, H.; Yeremin, A. V.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T. (2004). "Status of heavy element research using GARIS at RIKEN". Nuclear Physics A. 734: 101–108. Bibcode:2004NuPhA.734..101M. doi:10.1016/j.nuclphysa.2004.01.019.
  12. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  13. ^ Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry. 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
  14. ^ K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope, 278113, of the 113th Element". Journal of the Physical Society of Japan. 81 (10): 103201. arXiv:1209.6431. Bibcode:2012JPSJ...81j3201M. doi:10.1143/JPSJ.81.103201.
  15. ^ Chaisson, Eric, and Steve McMillan. Astronomy Today. 6th ed. San Francisco: Pearson Education, 2008.