Jump to content

Salar de Pajonales: Difference between revisions

Coordinates: 25°08′40″S 68°49′12″E / 25.14444°S 68.82000°E / -25.14444; 68.82000
From Wikipedia, the free encyclopedia
Content deleted Content added
Expanding article
Expanding article
Line 16: Line 16:
== Geography and hydrology ==
== Geography and hydrology ==


The salar lies at the margin of the [[hyperarid]] [[Atacama Desert]],{{sfn|Warren-Rhodes|Cabrol|Phillips|Tebes-Cayo|2023|p=2}} on the [[Altiplano]]-[[Puna]] [[high plateau]]{{sfn|Phillips|2022|p=1}} at at {{convert|3537|m}} elevation. It covers an area of {{convert|104|km2}}, making it the third-largest in the region behind Salar de Atacama and Salar de Punta Negra.{{sfn|Alonso|Risacher|Salazar|1999|p=285}} It has roughly the shape of a square, with three peninsulas jutting in on the northeastern and southeastern corners.{{sfn|Ercilla Herrero|2019|p=213}} Several islands are found in the north-central and south-central area of the salar.{{sfn|Ercilla Herrero|2019|p=216}} Only about {{convert|1.4|km2}} of Salar de Pajonales are actually covered with water{{sfn|Alonso|Risacher|Salazar|1999|p=285}} in the form of ponds and lagoons.{{sfn|Ruch|Warren|Risacher|Walter|2012|p=123}} A road crosses the salar.{{sfn|Phillips|2022|p=1}}
The salar lies at the margin of the [[hyperarid]] [[Atacama Desert]],{{sfn|Warren-Rhodes|Cabrol|Phillips|Tebes-Cayo|2023|p=2}} on the [[Altiplano]]-[[Puna]] [[high plateau]]{{sfn|Phillips|2022|p=1}} at at {{convert|3537|m}} elevation. It covers an area of {{convert|104|km2}}, making it the third-largest in the region behind Salar de Atacama and Salar de Punta Negra.{{sfn|Alonso|Risacher|Salazar|1999|p=285}} It has roughly the shape of a square, with three peninsulas jutting in on the northeastern and southeastern corners;{{sfn|Ercilla Herrero|2019|p=213}} this shape may be due to [[fault]] activity.{{sfn|Stoertz|Ericksen|1974|p=15}} Several islands are found in the north-central and south-central area of the salar.{{sfn|Ercilla Herrero|2019|p=216}} Only about {{convert|1.4|km2}} of Salar de Pajonales are actually covered with water{{sfn|Alonso|Risacher|Salazar|1999|p=285}} in the form of ponds and lagoons.{{sfn|Ruch|Warren|Risacher|Walter|2012|p=123}} A road crosses the salar.{{sfn|Phillips|2022|p=1}}


The principal salt is [[gypsum]] in the form of [[selenite]]{{sfn|Hinman|Cabrol|Gulick|Warren-Rhodes|2017|p=1}} with minor amounts of [[calcium chloride]], elemental [[sulfur]]{{sfn|Tebes-Cayo|Demergasso|Chong|Cabestrero|2021|p=145}} and [[ulexite]];{{sfn|Tebes|Rodriguez|Demergasso|Chong|2019|p=1}} the occurrence of halite is unclear.{{sfn|Tebes-Cayo|Demergasso|Chong|Cabestrero|2021|p=145}}{{sfn|Hinman|Cabrol|Gulick|Warren-Rhodes|2017|p=1}} They form a thick, [[brine]]-filled salt formation{{sfn|Risacher|Alonso|Salazar|2003|p=271}} with ridges, polygonal cracks,{{sfn|Warren-Rhodes|Cabrol|Phillips|Tebes-Cayo|2023|p=2}} tumuli{{sfn|Hinman|Cabrol|Gulick|Warren-Rhodes|2017|p=1}} and a rough crust.{{sfn|Ercilla Herrero|2019|p=214}} Water at Salar de Pajonales is extremely salty,{{sfn|Risacher|Alonso|Salazar|2003|p=253}} with [[calcium chloride]] and [[calcium sulfate]] being the main components.{{sfn|Warren-Rhodes|Cabrol|Phillips|Tebes-Cayo|2023|p=2}} There is evidence of ongoing dissolution of the salt,{{sfn|Ruch|Warren|Risacher|Walter|2012|p=123}} which has left deep pits{{sfn|Risacher|Alonso|Salazar|2003|p=256}} and cavities reaching {{convert|1|-|2|m}} height.{{sfn|Bishop|Yeşilbaş|Hinman|Burton|2021|p=2}} The dissolution may be caused by salt draining into [[groundwater]].{{sfn|Ruch|Warren|Risacher|Walter|2012|p=124}} Salt deposition is influenced by the activity of [[cyanobacteria]] and sulfur-oxidizing bacteria,{{sfn|Tebes-Cayo|Demergasso|Chong|Cabestrero|2021|p=146}} which precipitate gypsum that may entomb microorganisms.{{sfn|Tebes|Rodriguez|Demergasso|Chong|2019|p=1}}
The principal salt is [[gypsum]] in the form of [[selenite]]{{sfn|Hinman|Cabrol|Gulick|Warren-Rhodes|2017|p=1}} with minor amounts of [[calcium chloride]], elemental [[sulfur]]{{sfn|Tebes-Cayo|Demergasso|Chong|Cabestrero|2021|p=145}} and [[ulexite]];{{sfn|Tebes|Rodriguez|Demergasso|Chong|2019|p=1}} the occurrence of halite is unclear.{{sfn|Tebes-Cayo|Demergasso|Chong|Cabestrero|2021|p=145}}{{sfn|Hinman|Cabrol|Gulick|Warren-Rhodes|2017|p=1}} They form a thick, [[brine]]-filled salt formation{{sfn|Risacher|Alonso|Salazar|2003|p=271}} with ridges, polygonal cracks,{{sfn|Warren-Rhodes|Cabrol|Phillips|Tebes-Cayo|2023|p=2}} tumuli{{sfn|Hinman|Cabrol|Gulick|Warren-Rhodes|2017|p=1}} and a rough crust.{{sfn|Ercilla Herrero|2019|p=214}} Water at Salar de Pajonales is extremely salty,{{sfn|Risacher|Alonso|Salazar|2003|p=253}} with [[calcium chloride]] and [[calcium sulfate]] being the main components.{{sfn|Warren-Rhodes|Cabrol|Phillips|Tebes-Cayo|2023|p=2}} There is evidence of ongoing dissolution of the salt,{{sfn|Ruch|Warren|Risacher|Walter|2012|p=123}} which has left deep pits{{sfn|Risacher|Alonso|Salazar|2003|p=256}} and cavities reaching {{convert|1|-|2|m}} height.{{sfn|Bishop|Yeşilbaş|Hinman|Burton|2021|p=2}} The dissolution may be caused by salt draining into [[groundwater]].{{sfn|Ruch|Warren|Risacher|Walter|2012|p=124}} Salt deposition is influenced by the activity of [[cyanobacteria]] and sulfur-oxidizing bacteria,{{sfn|Tebes-Cayo|Demergasso|Chong|Cabestrero|2021|p=146}} which precipitate gypsum that may entomb microorganisms.{{sfn|Tebes|Rodriguez|Demergasso|Chong|2019|p=1}}
Line 58: Line 58:
* {{cite journal |last1=Risacher |first1=François |last2=Alonso |first2=Hugo |last3=Salazar |first3=Carlos |title=The origin of brines and salts in Chilean salars: a hydrochemical review |journal=Earth-Science Reviews |date=November 2003 |volume=63 |issue=3–4 |pages=249–293 |doi=10.1016/S0012-8252(03)00037-0}}
* {{cite journal |last1=Risacher |first1=François |last2=Alonso |first2=Hugo |last3=Salazar |first3=Carlos |title=The origin of brines and salts in Chilean salars: a hydrochemical review |journal=Earth-Science Reviews |date=November 2003 |volume=63 |issue=3–4 |pages=249–293 |doi=10.1016/S0012-8252(03)00037-0}}
* {{cite journal |last1=Ruch |first1=J. |last2=Warren |first2=J.K. |last3=Risacher |first3=F. |last4=Walter |first4=T.R. |last5=Lanari |first5=R. |title=Salt lake deformation detected from space |journal=Earth and Planetary Science Letters |date=May 2012 |volume=331-332 |pages=120–127 |doi=10.1016/j.epsl.2012.03.009}}
* {{cite journal |last1=Ruch |first1=J. |last2=Warren |first2=J.K. |last3=Risacher |first3=F. |last4=Walter |first4=T.R. |last5=Lanari |first5=R. |title=Salt lake deformation detected from space |journal=Earth and Planetary Science Letters |date=May 2012 |volume=331-332 |pages=120–127 |doi=10.1016/j.epsl.2012.03.009}}
* {{cite report|title=Geology of salars in Northern Chile|series=Professional Paper 811|first1=George E.|last1=Stoertz|first2=George Edward|last2=Ericksen|doi=10.3133/pp811|year=1974|url=https://pubs.er.usgs.gov/publication/pp811|format=PDF|publisher=U.S. G.P.O.}}
* {{cite report|last1=Tebes-Cayo|first1=C.|last2=Demergasso|first2=C.|last3=Chong|first3=G.|last4=Cabestrero|first4=Óscar|last5=Sanz Montero|first5=M. Esther|last6=Castro-Nallar|first6=E.|last7=Cabrol|first7=N.|year=2021|title=Geoquímica y comunidades microbianas en los salares de Pajonales y de Gorbea (Chile): Influencia en la formación de microbialitos de yeso|series=Geotemas|issn=1576-5172|url=https://eprints.ucm.es/id/eprint/70571/|language=es}}
* {{cite report|last1=Tebes-Cayo|first1=C.|last2=Demergasso|first2=C.|last3=Chong|first3=G.|last4=Cabestrero|first4=Óscar|last5=Sanz Montero|first5=M. Esther|last6=Castro-Nallar|first6=E.|last7=Cabrol|first7=N.|year=2021|title=Geoquímica y comunidades microbianas en los salares de Pajonales y de Gorbea (Chile): Influencia en la formación de microbialitos de yeso|series=Geotemas|issn=1576-5172|url=https://eprints.ucm.es/id/eprint/70571/|language=es}}
* {{cite conference|last1=Tebes|first1=C.|last2=Rodriguez|first2=C.|last3=Demergasso|first3=C.|last4=Chong|first4=G.|last5=Hinman|first5=N.|last6=Parro|first6=V.|date=January 2019|title=Microbial participation on the production and preservation of gypsum structures from Salar de Pajonales, northern of Chile|series=Geophysical Research Abstracts|volume=21|conference=EGU General Assembly 2019|url=https://meetingorganizer.copernicus.org/EGU2019/EGU2019-18068.pdf}}
* {{cite conference|last1=Tebes|first1=C.|last2=Rodriguez|first2=C.|last3=Demergasso|first3=C.|last4=Chong|first4=G.|last5=Hinman|first5=N.|last6=Parro|first6=V.|date=January 2019|title=Microbial participation on the production and preservation of gypsum structures from Salar de Pajonales, northern of Chile|series=Geophysical Research Abstracts|volume=21|conference=EGU General Assembly 2019|url=https://meetingorganizer.copernicus.org/EGU2019/EGU2019-18068.pdf}}

Revision as of 15:22, 16 April 2023

Salar de Pajonales
The Salar de Pajonales can be found at the bottom and centre of the map, in the basin 026-89
Coordinates25°08′40″S 68°49′12″E / 25.14444°S 68.82000°E / -25.14444; 68.82000
Primary inflowsRío San Eulogio
Catchment area1,984 square kilometres (766 sq mi)
Basin countriesChile
Surface area104 square kilometres (40 sq mi)
Surface elevation3,537 metres (11,604 ft)
References[1]

Salar de Pajonales is a playa in the southern Atacama Region of Chile and the third-largest there, behind Salar de Punta Negra and Salar de Atacama.

Geography and hydrology

The salar lies at the margin of the hyperarid Atacama Desert,[2] on the Altiplano-Puna high plateau[3] at at 3,537 metres (11,604 ft) elevation. It covers an area of 104 square kilometres (40 sq mi), making it the third-largest in the region behind Salar de Atacama and Salar de Punta Negra.[1] It has roughly the shape of a square, with three peninsulas jutting in on the northeastern and southeastern corners;[4] this shape may be due to fault activity.[5] Several islands are found in the north-central and south-central area of the salar.[6] Only about 1.4 square kilometres (0.54 sq mi) of Salar de Pajonales are actually covered with water[1] in the form of ponds and lagoons.[7] A road crosses the salar.[3]

The principal salt is gypsum in the form of selenite[8] with minor amounts of calcium chloride, elemental sulfur[9] and ulexite;[10] the occurrence of halite is unclear.[9][8] They form a thick, brine-filled salt formation[11] with ridges, polygonal cracks,[2] tumuli[8] and a rough crust.[12] Water at Salar de Pajonales is extremely salty,[13] with calcium chloride and calcium sulfate being the main components.[2] There is evidence of ongoing dissolution of the salt,[7] which has left deep pits[14] and cavities reaching 1–2 metres (3 ft 3 in – 6 ft 7 in) height.[15] The dissolution may be caused by salt draining into groundwater.[16] Salt deposition is influenced by the activity of cyanobacteria and sulfur-oxidizing bacteria,[17] which precipitate gypsum that may entomb microorganisms.[10]

Its catchment covers an area of 1,984 square kilometres (766 sq mi),[1] but lacks permanent surface drainages. Its waterbodies, which are inhabited by flamingos, are sustained by underground water.[18] In the north, there is intermittent discharge in the San Eulogio River and in other nameless streams from Cerro La Pena and Pampa San Eulogio.[19] The terrain is formed mostly by volcanic rocks consisting of andesite and rhyolite; there are active hot springs.[20]

Prehistoric lake

Around the last glacial maximum, water levels in Salar de Pajonales rose by about 50 metres (160 ft), covering an area of about 205 square kilometres (79 sq mi).[21] The lake left clear shorelines[22] with terraces,[23] river deltas and wavecut platforms and notches.[24] Islands in the salar were cut in or even flattened by wave erosion.[25] This lake level highstand may be correlated to the Lake Tauca episode on the Bolivian Altiplano, which took place shortly after the last glacial maximum when water levels rose in the regional lakes. Archaeological sites found at Pajonales and neighbouring Aguas Calientes may be correlated to a former lake highstand.[26] The present-day gypsum deposits formed underwater during this highstand.[8] The climatic conditions may have resembled these of Mars during the Hesperian period.[27]

Climate and vegetation

The mean temperature at Salar de Pajonales is 5 °C (41 °F) and annual precipitation ranges 80–150 millimetres (3.1–5.9 in). Annual potential evaporation reaches 1,350 millimetres (53 in).[1] Precipitation occurs mostly during summer from the east and in winter from the west.[20]

The vegetation of the area consists of matorral formed by Fabiana bryoides and Phacelia pinnatifida[28] and steppe dominated by Stipa frigida.[29] Other plant species recorded are Cistanthe minuscula[30] and Cristaria andicola.[31]

Microbialites and stromatolites grow in the salar,[2] and former stromatolites form mounds and small domes on the crust of Salar de Pajonales.[32] Maximum development has variously been found either in the central parts of the salar and the deeper lagoons,[33] or around the islands.[6] There are also diatoms at Salar de Pajonales.[10]

Human use

Salar de Pajonales lies in the southern part of the Llullaillaco National Park.[34] There are prehistoric shelters, pircas, in the area.[35] The European Large Southern Array observatory project placed instruments at Salar de Pajonales in 1997,[36] before moving them to Llano de Chajnantor the following year.[37]

Owing to its extreme conditions, like the low atmospheric pressure,[8] extreme salinity and aridity, large day-night temperature differences and high UV radiation,[3] Salar de Pajonales has been used as an analogue for environments on Mars where life may persist to this day. Traces of such life can be preserved by sediments and sulfate-chloride salts.[2] Models of how life-bearing environments may appear from remote imaging have been developed on the basis of the appearance of Salar de Pajonales.[38]

References

Bibliography

External links

  • Hinman, Nancy W.; Hofmann, Michael H.; Warren-Rhodes, Kimberly; Phillips, Michael S.; Noffke, Nora; Cabrol, Nathalie A.; Chong Diaz, Guillermo; Demergasso, Cecilia; Tebes-Cayo, Cinthya; Cabestrero, Oscar; Bishop, Janice L.; Gulick, Virginia C.; Summers, David; Sobron, Pablo; McInenly, Michael; Moersch, Jeffrey; Rodriguez, Constanza; Sarazzin, Philippe; Rhodes, Kevin L.; Riffo Contreras, Camila Javiera; Wettergreen, David; Parro, Victor (2022). "Surface Morphologies in a Mars-Analog Ca-Sulfate Salar, High Andes, Northern Chile". Frontiers in Astronomy and Space Sciences. 8. doi:10.3389/fspas.2021.797591. ISSN 2296-987X.