Hydropower in the Mekong River Basin: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
mNo edit summary
→‎Environmental impacts of Mekong hydropower: Rewrite of 'Environmental impacts of Mekong hydropower'.
Line 380: Line 380:


==Environmental impacts of Mekong hydropower==
==Environmental impacts of Mekong hydropower==
The environmental impacts of [[Mekong]] hydropower development are generally well studied and understood. Below, four of the most important are addressed although there are additional impacts (for example, impacts of forestry as a result of reservoir clearance, and greenhouse gas emissions):
A study by the Mekong River Commission (MRC)<ref>{{cite web |url=http://www.mrcmekong.org/ |title=Home |website=mrcmekong.org}}</ref> presented at the Third MRC International Conference in March 2018, concluded that hydropower development on the Mekong River will aggravate food insecurity and poverty in the region. The report forecasts that Thailand is expected to suffer the most economically and ecologically. According to the report, full scale dam development will decrease GDP growth for lower Mekong basin countries by US$29 billion. Thailand would have the greatest economic loss, as much as US$11 billion. Laos and Cambodia would each face losses of US$9 billion in GDP growth. Native fish stocks would be particularly hard hit: more than 900,000 tonnes of fish biomass, worth US$4.3 billion, would disappear by 2040 from the Mekong as a result of dams. Thailand would have the highest rate of fish loss, 55 percent, followed by Laos, 50 percent; Cambodia, 35 percent; and Vietnam, 30 percent. The creation of reservoirs would result in many parts of the Mekong becoming a lake ecosystem, unsuitable for many native aquatic species of the river environment and will eventually drive them to extinction.<ref>{{cite news |last1=Rujivanarom |first1=Pratch |title=Aquatic life faces extinction as upstream dams leave Mekong River dry |url=https://www.nationthailand.com/news/30373286 |accessdate=20 July 2019 |work=The Nation |date=19 July 2019}}</ref> A Lao government executive dismissed the research findings as "just an estimation". He insisted that hydropower dams were crucial to solving poverty and that they would provide large economic benefits to the entire region.<ref name="Nation-20180404">{{cite news|last1=Rujivanarom|first1=Pratch|title=Mekong River dams 'will harm food security'|url=http://www.nationmultimedia.com/detail/national/30342399|accessdate=10 April 2018|work=The Nation|date=4 April 2018}}</ref><ref>{{cite news|last1=Boyle|first1=David|last2=Narin|first2=Sun|title=Mekong Leaders Mostly Mum on Risks Tied to Intense Damming|url=https://www.voanews.com/a/mekong-leaders-mostly-mum-risks-tied-to-intense-damming/4334134.html|accessdate=10 April 2018|work=VOA|date=5 April 2018}}</ref> Effective from 4 March 2021, a decree issued by the government of Laos requires all hydropower operators to inform authorities whenever dam reservoirs reach full capacity or when river levels fall to a critical level.  The new guidelines aim to improve the management of hydropower dams and minimize flooding and water shortages.<ref>{{cite news|date=February 25, 2021|title=Laos issues new decree on dams aimed at minimising harm|newspaper=Reuters|url=https://www.reuters.com/article/laos-hydro/laos-issues-new-decree-on-dams-aimed-at-minimising-harm-idUSL4N2KV32T}}</ref>

''River connectivity'': 'connectivity' refers to the degree to which matter and organisms can move among spatially defined units in a natural system. ‘River connectivity’ is typically described as longitudinal (between a river's main channel and its [[floodplain|floodplains]]), lateral (between upstream areas in the river channel or catchment, and downstream ones), and vertical (within the water column, between upper water layers and lower ones.<ref>{{cite book |last1=Seliger |first1=Carina |last2=Zeiringer |first2=Bernhard |year=2009 |chapter=River Connectivity, Habitat Fragmentation and Related Restoration Measures |editor1=Schmutz, Stefan |editor2=Sendzimir, Jan |title=Riverine ecosystem management: science for Governing towards a sustainable future
|location=Cham|publisher=SpringerOpen |pages=171-186 |isbn=978-3-319-73250-3 |url=https://link.springer.com/content/pdf/10.1007/978-3-319-73250-3.pdf}}</ref><ref name=Wohl">{{cite journal|last1=Wohl |first1=Ellen | date=June 15, 2017 |title=Connectivity in rivers|journal=Progress in Physical Geography: Earth and Environment |volume=41|issue=3|pages=345-362|doi=10.1177/0309133317714972}}</ref> River connectivity can be conceptualised as a continuum from 'fully connected' to 'disconnected'. River connectivity strongly influences the resistance and resilience of rivers to natural and human-induced disturbances.<ref name=Wohl"></ref>

Dams interrupt connectivity, and so fish cannot swim upstream to spawn or breed; dams affect water quality in a variety of ways, altering upstream ecosystems so that they contrast starkly with downstream ones. Dam reservoirs are lacustrine (lake-like) environments unlike rapidly flowing waters downstream; upstream, the water is heavy with sediments, while downstream it is not; above the dam, the water is cold, while below it, it is warmer.

A 2014 study paper by Günter Grill and his colleagues (2014) explores an HPP build-out of 81 proposed dams across the Mekong Basin.<ref>{{cite journal|last1=Grill |first1=Günter | last2=Ouellet Dallaire |first2= Camille |last3=Fluet Chouinard |first3=Etienne |last4=Sindorf |first4=Nikolai \last5=Lehner \first5=Berhard |date=2014 |title=Development of new indicators to evaluate river fragmentation and flow regulation at large scales: A case study for the Mekong River Basin|journal=Ecological Indicators |volume=45|issue=2014|pages=148-159|doi=10.1016/j.ecolind.2014.03.026}}</ref> If this were to occur, it would reduce the Mekong’s connectivity to just 11% by 2022. This build-out – already well advanced – would make the Mekong one of the most heavily impounded rivers in the world.

''Hydrological impacts'': about 75% of annual flows through the Mekong system occur between late June and early November,<ref>{{cite journal|last1=Piman |first1=Thanapon |last2=Cochrane |first2=Thomas A. |last3=Arias |first3=Maricio E. |last4=Green |first4=Anthony |last5=Dat |first5=N.D. |date=1999 |title=Assessment of Flow Changes from Hydropower Development and Operations in Sekong, Sesan, and Srepok Rivers of the Mekong Basin|journal=Journal of Water Resources Planning and Management |volume=139| issue=6| pages=723-732|doi=10.1061/(ASCE)WR.1943-5452.0000286}}</ref><ref>{{cite report |author=MRC |date= 2005|title=Overview of the Hydrology of the Mekong Basin |url=http://archive.iwlearn.net/mrcmekong.org/download/free_download/Hydrology_report_05.pdf |publisher=[[Mekong River Commission]] |access-date=2024-02-12 }} </ref> which drives ecological productivity throughout the system.<ref name="Campbell2009">{{cite book |last1=Campbell |first1=Ian C. |year=2009 |chapter=Introduction |editor1=Campbell, Ian C. |title=The Mekong: biophysical environment of an international river basin |location=Amsterdam|publisher=Academic Press |pages=1-11 |isbn=978-0-12-374026-7}}</ref><ref>{{cite journal|last1=Stone |first1=Richard | date=August 12, 1999 |title=Mayhem on the Mekong|journal=Science |volume=333|issue=6044|pages=814-818|doi=10.1126/science.333.6044.814}}</ref>. This surge of water is known as the 'flood pulse' and dams (of all kinds) will contribute to its diminution. Wet season flows can be expected to reduce, while dry season flows can be expected to increase.<ref name="Hecht2019">{{cite journal |last1=Hecht |first1=Jory S. |last2=Lacombe |first2=Guillaume |last3=Arias |first3=Mauricio E. |last4=Dang |first4=Thanh Duc |last5=Piman |first5=Thanapon |title=Hydropower dams of the Mekong River basin: A review of their hydrological impacts |journal=Journal of Hydrology |date=2019 |volume=568 |issue=2019 |pages=285-300 |doi=10.1016/j.jhydrol.2018.10.045 |url=https://linkinghub.elsevier.com/retrieve/pii/S0022169418308072}}</ref> This has significant implications for the Mekong's ecology.

''Fisheries impacts'': the Mekong’s fisheries are threatened in multiple ways, most importantly by dams and excessive fishing pressure.<ref name="Ngoretal2018">{{cite journal |last1=Ngor |first1=Peng Bun |last2=McCann |first2=Kevin S. |last3=Grenouillet |first3=Gaël |last4=So |first4=Nam |last5=McMeans |first5=Bailey C. |last6=Fraser |first6=Evan |last7=Lek |first7=Sovan |title=Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries |journal=Scientific Reports |date=2018 |volume=8 |issue=1 |pages=8947 |doi=10.1038/s41598-018-27340-1 |url=http://www.nature.com/articles/s41598-018-27340-1}}</ref> Dams affect fisheries by:<ref name=Puk&Geh>{{cite web |last1=Pukinskis |first1=Ilse |last2=Geheb |first2=Kim |title=The Impacts of Dams on the Fisheries of the Mekong |url=https://cgspace.cgiar.org/rest/bitstreams/24817/retrieve |website=CGSpace |publisher=WLE Greater Mekong |access-date=2024-02-12 |location=Vientiane |date=2012}}</ref>
*Acting as barriers to fish migration - either as fish try to migrate upstream to spawn; or for trapping fish fry or eggs as these travel downstream.
*Interrupting natural flood cycles to which fish have evolved and adapted to over thousands of years.
*Riverbed hardening. Dams typically release water in bursts, which removes smaller sediments like silt, sand, and gravel, as well as aquatic plants and animals and debris from vegetation. As a result, the bedrock below the dam becomes exposed and loses its value as a fish habitat.
*Trapping sediment, a significant source of nutrition for fish. <ref>{{cite report |last1=Baran |first1=Eric |last2=Guerin |first2=Eric | last3=Nasielski |first3=Joshua |date= 2015 |title=Fish, sediment and dams in the Mekong |url=https://digitalarchive.worldfishcenter.org/bitstream/handle/20.500.12348/462/3927_Fish-sediment-and-dams-in-the-mekong.pdf?sequence1= |publisher=[[WorldFish]] and WLE Greater Mekong |location=Penang |access-date=2024-02-12 }} </ref>
*Altering water temperature. Water released from a dam is typically colder than prevailing temperatures downstream of the dam. This has a direct impact on fish habitats and populations.
*Hydropeaking, which refers to the release of water from HPPs when demand is highest (usually during the day), and much smaller releases when demand is low. This also affects fisheries through the rapid alteration and high and low river flows. Globally, hydropeaking has been found to impact fish biodiversity, and fish community composition.<ref name=Puk&Geh></ref><ref>{{cite book |last1=[[World Commission on Dams]] |title=Dams and development - a new framework for decision-making. The Report of the World Commission on Dams |date=2000 |publisher=Earthscan |url=https://archive.internationalrivers.org/sites/default/files/attached-files/world_commission_on_dams_final_report.pdf |location=London |isbn=9781853837982 |access-date=12 February 2024 }}</ref><ref name="Yoshida">{{cite journal |last1=Yoshida |first1=Yuichiro |last2=Lee |first2=Han Soo |last3=Trung |first3=Bui Huy |last4=Tran |first4=Hoang-Dung |last5=Lall |first5=Marian Keshlav |last6=Kakar |first6=Kifayatullah |last7=Xuan |first7=Tran Dung |title=Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin |journal=Sustainability |date=2020 |volume=12 |issue=6 |pages=2408 |doi=10.3390/su12062408}}</ref>

The fisheries impact of all existing and planned mainstream dams will be most felt in Cambodia (which will experience three-quarters of the loss), while the balance will be experienced in Vietnam, Lao PDR and Thailand.<ref name="Yoshida"></ref> In terms of tonnages, this will represent a loss of between 580-750,000 Mt per year.<ref name="Yoshida"></ref>

In another study by the [[Mekong River Commission]], fisheries assessments conducted in 2020 suggested that the annual finfish yield from the lower Mekong (i.e. those parts of the basin that fall within [[Cambodia]], [[Laos]], [[Thailand]] and [[Vietnam]])) was between 1.51 to 1.71 million tonnes, while the harvest of other aquatic animals (OAAs) was approximately 443,000 tons. This is approximately 25-30% less than yield estimates conducted in 2000 and 2010. The estimated value of the fish catch varies from USD 7.13 billion to USD 8.37 billion annually. In addition, the estimated value of the OAA harvest is approximately USD 1.13 billion.<ref name="MRC2020">{{cite report |author=MRC |date= 2020 |title=Assessment of fisheries yield in the lower Mekong River Basin 2020. |url=https://www.mrcmekong.org/assets/Publications/Report_Fisheries-Yield-Assessment_SP.pdf |publisher=[[Mekong River Commission]] |location=Vientiane |access-date=2024-02-12 }} </ref>

''Sediment impacts'': in the Mekong, some 40% of the sediments that reach the Mekong Delta are derived from the [[Three Parallel Rivers]] area in [[Yunnan]], while some 52% come from the [[Central Highlands (Vietnam)|Central Highlands of [[Vietnam]]<ref name="MRC2010">{{cite report |author=MRC |date= 2010 |title=State of the Basin Report 2010. |url=https://www.mrcmekong.org/assets/Publications/basin-reports/MRC-SOB-report-2010full-report.pdf |publisher=[[Mekong River Commission]] |location=Vientiane |access-date=2024-02-13 }} </ref>. The balance comes from those parts of the basin in northern [[Thailand]], and the Tibetan gorges. <ref name="MRC2010"></ref><ref name="Kondolfetal">{{cite journal |last1=Kondolf |first1=George M. |last2=Rubin |first2=Zan K. |last3=Minear |first3=J. Toby |title=Dams on the Mekong: Cumulative sediment starvation |journal=Environmental Management |date=2014 |volume=50 |issue=6 |pages=5158-5169 |doi=10.1002/2013WR014651}}</ref> Sediment loads are lowest during the dry season and highest during the first months of the flood season, when loose sediments weathered during the dry season are washed into rivers. <ref name="MRC2010"></ref><ref>{{cite journal |last1=Kummu |first1=Matti |last2=Varis |first2=Olli |title=Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River |journal=Geomorphology |date=2007 |volume=85 |issue=3-4 |pages=275-293 |doi=10.1016/j.geomorph.2006.03.024}}</ref>
Although suspended sediment concentrations in the Mekong have been monitored since 1994, the ‘pre-disturbance’ sediment load is unknown. Nevertheless, studies can demonstrate very significant declines in the Mekong’s sediment load since 2001. At [[Chiang Saen]], sediment flows have decreased from about 85 million metric tonnes per year (Mt/yr) to 10.8 million Mt/yr, meaning that the sediment contributions from China to the Mekong mainstream has decreased to about 16% of all sediments in the Lower Mekong as compared to about 55% historically. <ref name="MRC2019">{{cite report |author=MRC |date= 2019 |title=State of the Basin Report 2018. |url=http://www.mrcmekong.org/assets/Publications/SOBR-v8_Final-for-web.pdf |publisher=[[Mekong River Commission]] |location=Vientiane |access-date=2024-02-14 }} </ref>A similar trend is seen down-stream at [[Pakse]], where average loads have decreased from 147 Mt/yr to 66 Mt/yr between 1994 and 2013.<ref name="MRC2019"></ref>

The declining sediment load has significant implications for the [[Mekong Delta]], recharging sediments otherwise washed away by the sea, consumed by sea-level rise, or in combination with land subsidence. Studies of the possible long-term consequences of system-wide sediment reductions suggest that it is likely that nearly half of the Delta's land surface will be below sea level by 2100, with the remaining areas impacted by saline intrusion from the sea and frequent flooding.<ref name="Kondolfetal"></ref>
Much of the Mekong’s sediment decline is attributed to the the 'trapping efficiency' of dams.<ref name="Kondolfetal"></ref><ref name="MRC2019"></ref><ref>{{cite journal |last1=Allison |first1=Mead |last2=Nittrouer |first2=Charles |last3=Ogston |first3=Andrea |last4=Mullarney |first4=Julia |last5=Nguyen |first5=Thanh |title=Sedimentation and Survival of the Mekong Delta: A Case Study of Decreased Sediment Supply and Accelerating Rates of Relative Sea Level Rise |journal=Oceanography |date=2017 |volume=30 |issue=3 |pages=98-109 |doi=10.5670/oceanog.2017.318}}</ref><ref> {{cite report |last1=Piman |first1=Thanapon |last2=Shrestha |first2=Manish |date= 2017 |title=Case study on sediment in the Mekong River Basin: Current state and future trends. |url=https://www.sei.org/mediamanager/documents/Publications/Bangkok/SEI_2017_Report_Mekong_sediment_LoRes.pdf |publisher=[[Stockholm Environment Institute]] |location=Stockholm |access-date=2024-02-14 }} </ref>


== Social Impacts ==
== Social Impacts ==

Revision as of 12:11, 14 February 2024

Ubol Ratana Dam in Thailand

The estimated hydropower potential of Mekong River Basin about 58,930 Megawatts (MW).[1][2][3] As of February 2024, there are an estimated 167 Hydropower Plants (HPPs) in the Mekong, with a combined installed capacity of some 36,376.3 MW. An additional 20 HPPs are currently under construction and at various stages of completion. These have a combined installed capacity of an additional 4,535.5 MW.

The single most significant impact on the use of water and its management in the Mekong Region is hydropower.[4] These developments in the Mekong River Basin have resulted in substantial environmental and social impacts, which are summarised below. These have fuelled controversy [5] and hydropower is a prominent part of the discussion around the river, its basin, and its management. This debate occurs in both the academic literature, as well as the media, and is a focus for many activist groups.[6][7]

The countries that share the Mekong River Basin have all sought the large-scale infrastructural development of its waters. As part of China's Great Western Development program, large-scale hydropower development in China's Yunnan Province has been substantial [8][9][10], on the Mekong, the Jinsha, and the Red rivers. Large amounts of Yunnan's hydropower is exported eastwards to energy intensive load centres, such as Guangxi and Guangdong. [11] Yunnan, however, has large electricity over-supply problems, which has led to significant hydropower curtailment [11][12].

The Lao government has also prioritized hydropower development, primarily as an export commodity. In 2021, almost 82% of Lao electricity was exported.[13], mostly to Thailand. Power production (from all sources, including hydropower) contributed 12.8% to national GDP in 2022, while electricity exports comprised almost 29% of total export values in the same year,[14] and investments in electricity production represented 79% of total foreign direct investment in 2021.[15]

Most of Cambodia's hydropower has been developed in the southwest of the country, outside of the Mekong River Basin[16][17]. Its largest HPP, the Lower Sesan 2 is, however, within the Mekong River Basin, and generates some 20% of the country's electricity.[18] Cambodia has ruled out developing hydropower on the Mekong mainstream[19], but multiple dams are planned for construction in Mekong tributary catchments. Cambodia also exports electricity directly from the Don Sahong HPP, a southern Lao dam located on the Mekong mainstream[20].

In Thailand, little technically exploitable hydropower potential remains in its parts of the Mekong River Basin. Most of its HPPs were developed in the 1980s and 1990s, and accompanied by large-scale irrigation infrastructure development as part of the massive Kong-Chi-Mun Project[21], more recently rearticulated as the Khong-Loei-Chi-Mun Project [22][23] Large-scale energy infrastructure in Thailand has been met with strong resistance - for example, the Assembly of the Poor's opposition to the Pak Mun HPP, the last dam to be commissioned in Thailand. This has forced Thailand to export the social and environmental externalities of hydropower construction and operation to neighbouring states.[24][25]

While there are multiple HPPs planned for Myanmar parts of the Mekong River Basin,[26] years of political instability have generally impended hydropower development.

Vietnam's Mekong hydropower development is concentrated in its Central Highlands. It does not appear as if any technically-exploitable hydropower potential remains. Here, hydropower has also been accompanied by significant irrigation development. Vietnam's hydropower investments in this area includes sizeable dams on two key Mekong tributaries, the Sesan and the Srepok rivers.

Mekong mainstream hydropower plants

HPPs on the Mekong mainstream have aroused particular environmental concerns.[27][28] The majority of these are based in China's Yunnan Province. Table 1 below indicates the status of each of these HPPs.

Table 1: Hydropower plants on the Mekong mainstream

Project Country Location COD Installed capacity (MW) Status
Sambor Cambodia 12°47′13″N 105°56′19″E / 12.786849°N 105.938582°E / 12.786849; 105.938582 (Sambor HPP) N/A 2,600 Cancelled
Stung Treng Cambodia 13°34′31″N 105°59′00″E / 13.575317°N 105.98345°E / 13.575317; 105.98345 (Stung Treng HPP) N/A 980 Cancelled
Angsai China 32°28′00″N 95°23′39″E / 32.466805°N 95.394246°E / 32.466805; 95.394246 (Angsai HPP) ? 55 Planned
Baita China 28°58′51″N 98°37′36″E / 28.980898°N 98.626669°E / 28.980898; 98.626669 (Baita HPP) ? ? Planned
Banda China 30°12′00″N 97°56′01″E / 30.2°N 97.93365°E / 30.2; 97.93365 (Banda HPP) ? 1,000 Planned
Bangduo China 29°28′11″N 98°23′41″E / 29.469708°N 98.394729°E / 29.469708; 98.394729 (Bangduo HPP) ? 720 Planned
Cege China 30°59′06″N 97°20′20″E / 30.985°N 97.339°E / 30.985; 97.339 (Cege HPP) ? 129 Planned
Dachaoshan China 24°01′30″N 100°22′13″E / 24.024947°N 100.3703°E / 24.024947; 100.3703 (Dachaoshan HPP) 2003 1,350 Commissioned
Dahuaqiao China 26°18′29″N 99°08′21″E / 26.308096°N 99.139288°E / 26.308096; 99.139288 (Dahuaqiao HPP) 2018 920 Commissioned
Dongzhong China 31°52′22″N 96°59′24″E / 31.872777°N 96.99°E / 31.872777; 96.99 (Dahuaqiao HPP) ? 108 Planned
Ganlanba China 21°50′38″N 100°56′17″E / 21.843867°N 100.937917°E / 21.843867; 100.937917 (Ganlanba HPP) ? 155 Planned
Gongguoqiao China 25°35′09″N 99°20′08″E / 25.585917°N 99.335567°E / 25.585917; 99.335567 (Gongguoqiao HPP) 2012 900 Commissioned
Guoduo China 31°31′45″N 97°11′29″E / 31.529089°N 97.191279°E / 31.529089; 97.191279 (Guoduo HPP) 2015 160 Commissioned
Guonian China 28°19′09″N 98°52′06″E / 28.319211°N 98.868424°E / 28.319211; 98.868424 (Guonian HPP) N/A 1,200 Cancelled
Gushui China 28°36′31″N 98°44′46″E / 28.608683°N 98.746133°E / 28.608683; 98.746133 (Gushui HPP) ? 2,600 Planned
Huangdeng China 26°32′54″N 99°06′46″E / 26.548199°N 99.112669°E / 26.548199; 99.112669 (Huangdeng HPP) 2017 1,900 Commissioned
Jinghong China 22°03′12″N 100°45′59″E / 22.053206°N 100.766478°E / 22.053206; 100.766478 (Jinghong HPP) 2009 1,750 Commissioned
Lidi China 27°50′53″N 99°01′50″E / 27.848016°N 99.030555°E / 27.848016; 99.030555 (Lidi HPP) 2019 420 Commissioned
Lin Chang China 31°10′49″N 97°11′07″E / 31.1804°N 97.1852°E / 31.1804; 97.1852 (Lin Chang HPP) ? 72 Planned
Longqingxia China 32°53′03″N 95°21′01″E / 32.884167°N 95.350283°E / 32.884167; 95.350283 (Longqingxia HPP) 2006 2.5 Commissioned
Manwan China 24°37′20″N 100°26′55″E / 24.622086°N 100.448544°E / 24.622086; 100.448544 (Manwan HPP) 1995 1,570 Commissioned
Mengsong China 21°46′49″N 101°08′51″E / 21.780267°N 101.147367°E / 21.780267; 101.147367 (Mengsong HPP) N/A 600 Cancelled
Miaowei China 25°51′15″N 99°09′47″E / 25.854121°N 99.163155°E / 25.854121; 99.163155 (Miaowei HPP) 2017 1,400 Commissioned
Nuozhadu China 22°38′32″N 100°26′11″E / 22.642128°N 100.436336°E / 22.642128; 100.436336 (Nuozhadu HPP) 2014 5,850 Commissioned
Quzika China 30°02′23″N 97°53′22″E / 30.039854°N 97.889503°E / 30.039854; 97.889503 (Quzika HPP) ? 405 Planned
Ru Mei China 29°39′00″N 98°20′52″E / 29.649933°N 98.3477°E / 29.649933; 98.3477 (Ru Mei HPP) ? 2,100 Planned
Tuoba China 27°11′39″N 99°06′27″E / 27.194231°N 99.107516°E / 27.194231; 99.107516 (Tuoba HPP) 2025 1,400 Under construction
Wunonglong China 27°55′57″N 98°56′00″E / 27.932554°N 98.9333°E / 27.932554; 98.9333 (Wunonglong HPP) 2018 990 Commissioned
Xiaowan China 24°42′15″N 100°05′29″E / 24.7042226°N 100.091255°E / 24.7042226; 100.091255 (Xiaowan HPP) 2010 4,200 Commissioned
Yue Long China 30°52′05″N 97°20′50″E / 30.868008°N 97.347124°E / 30.868008; 97.347124 (Yue Long HPP) 2030 100 Planned
Ban Koum Laos 15°25′04″N 105°35′15″E / 15.417881°N 105.587364°E / 15.417881; 105.587364 (Ban Koum HPP) 2030 1,872 Planned
Don Sahong Laos 13°57′22″N 105°57′51″E / 13.956223°N 105.964247°E / 13.956223; 105.964247 (Don Sahong HPP) 2020 240 Commissioned
Luang Prabang Laos 20°04′00″N 102°11′32″E / 20.06663°N 102.192339°E / 20.06663; 102.192339 (Luang Prabang HPP) 2030 1,460 Under construction
Pak Chom Laos 18°12′04″N 102°03′02″E / 18.201038°N 102.050588°E / 18.201038; 102.050588 (Pak Chom HPP) ? 1,079 Planned
Pak Beng Laos 19°50′58″N 101°01′10″E / 19.849455°N 101.019507°E / 19.849455; 101.019507 (Pak Beng HPP) 2033 912 Planned
Pak Lay Laos 18°24′05″N 101°35′01″E / 18.401361°N 101.58362°E / 18.401361; 101.58362 (Pak Lay HPP) 2029 728 Planned
Phoug Noi Laos 15°03′01″N 105°50′55″E / 15.050186°N 105.848498°E / 15.050186; 105.848498 (Phoug Noi HPP) 2029 728 Planned
Sanakham Laos 17°49′45″N 101°33′25″E / 17.829183°N 101.556969°E / 17.829183; 101.556969 (Sanakham HPP) 2028 684 Planned
Thako Laos 13°57′33″N 105°59′17″E / 13.959072°N 105.988047°E / 13.959072; 105.988047 (Thako HPP) N/A 86-172 Cancelled
Xayaburi Laos 19°15′14″N 101°48′49″E / 19.254006°N 101.813699°E / 19.254006; 101.813699 (Xayaburi HPP) 2019 1,285 Commissioned

Notes: COD = Commercial Operating Date; N/A = Not Applicable

Existing hydropower infrastructure in the Mekong River Basin

Table 2: Commissioned dams in the Mekong River Basin (15 MW installed capacity and above)[29]

Project Country River Location COD Installed capacity (MW) Mean Annual Energy (GWh) Height (m) Crest length (m) Total storage (million m3) Max reservoir area (km2)
Lower Sesan 2 Cambodia Sesan 13°33′05″N 106°15′50″E / 13.551408°N 106.263841°E / 13.551408; 106.263841 (Lower Sesan 2 HPP) 2018 400 2,312 45 7,729 1,790 335
Dachaoshan China Mekong 24°01′30″N 100°22′13″E / 24.024947°N 100.3703°E / 24.024947; 100.3703 (Dachaoshan HPP) 2003 1,350 5,500 115 481 890 26.25
Dahuaqiao China Mekong 26°18′29″N 99°08′21″E / 26.308096°N 99.139288°E / 26.308096; 99.139288 (Dahuaqiao HPP) 2018 920 4,070 106 231.5 293
Ganlanba China Mekong 21°50′38″N 100°56′17″E / 21.843867°N 100.937917°E / 21.843867; 100.937917 (Ganlanba HPP) 2015 155 1,177 60.5 458 577 58
Gongguoqiao China Mekong 25°35′09″N 99°20′08″E / 25.585917°N 99.335567°E / 25.585917; 99.335567 (Gongguoqiao HPP) 2012 900 4,041 105 356 316 343
Guoduo China Mekong 31°31′45″N 97°11′29″E / 31.529089°N 97.191279°E / 31.529089; 97.191279 (Guoduo HPP) 2015 160 823 93 235.5 83
Huangdeng China Mekong 26°32′54″N 99°06′46″E / 26.548199°N 99.112669°E / 26.548199; 99.112669 (Huangdeng HPP) 2017 1,900 8,578 203 457 1,613
Jinfeng China Nan La He 21°35′31″N 101°13′30″E / 21.592026°N 101.225135°E / 21.592026; 101.225135 (Jinfeng HPP) 1998 16 64.3 45 19.48
Jinghong China Mekong 22°03′12″N 100°45′59″E / 22.053206°N 100.766478°E / 22.053206; 100.766478 (Jinghong HPP) 2009 1,750 5,570 108 705.5 1,140 510
Jinhe China Jin He 30°48′22″N 97°19′59″E / 30.806181°N 97.332926°E / 30.806181; 97.332926 (Jinhe HPP) 2004 60 367 34 68.4 4.27
Laoyinyan China Gua Lan Zi He/Shun Dian He 24°28′09″N 99°49′03″E / 24.469128°N 99.81754°E / 24.469128; 99.81754 (Laoyinyan HPP) 1997 16 4.2 1,092
Lidi China Mekong 27°50′53″N 99°01′50″E / 27.848016°N 99.030555°E / 27.848016; 99.030555 (Lidi HPP) 2019 420 1,753 75 346.4 75 3.7
Luozhahe 1 China Luo Zha He 24°30′19″N 100°27′06″E / 24.505207°N 100.451749°E / 24.505207; 100.451749 (Luozhahe 1 HPP) 2018 30 135 59 14.33
Luozhahe 2 China Luo Zha He 24°29′13″N 100°24′08″E / 24.486867°N 100.402128°E / 24.486867; 100.402128 (Luozhahe 2 HPP) 2016{ 50 225 71 3,391
Manwan China Mekong 24°37′20″N 100°26′55″E / 24.622086°N 100.448544°E / 24.622086; 100.448544 (Manwan HPP) 1995 1,570 6,710 132 418 920 415
Miaowei China Mekong 25°51′15″N 99°09′47″E / 25.854121°N 99.163155°E / 25.854121; 99.163155 (Miaowei HPP) 2017 1,400 5,999 140 660
Nanhe 1 China Luo Zha He 24°20′33″N 100°00′44″E / 24.342442°N 100.012183°E / 24.342442; 100.012183 (Nanhe 1 HPP) 2009 40 170 56.8 148 11.36
Nanhe 2 China Luo Zha He 24°22′38″N 100°03′00″E / 24.377086°N 100.050098°E / 24.377086; 100.050098 (Nanhe 2 HPP) ? 25 100
Nuozhadu China Mekong 22°38′32″N 100°26′11″E / 22.642128°N 100.436336°E / 22.642128; 100.436336 (Nuozhadu HPP) 2014 5,850 23,912 262 608 23,703 320
Wunonglong China Mekong 27°55′57″N 98°56′00″E / 27.932554°N 98.9333°E / 27.932554; 98.9333 (Wunonglong HPP) 2018 990 4,116 138 247 284
Xiaowan China Mekong 24°42′15″N 100°05′29″E / 24.7042226°N 100.091255°E / 24.7042226; 100.091255 (Xiaowan HPP) 2010 4,200 18,990 295 893 14,560 194
Xi'er He 1 China Xi'er He 25°34′44″N 100°12′09″E / 25.578801°N 100.202419°E / 25.578801; 100.202419 (Xi'er He 1 HPP) 1979 105 440
Xi'er He 2 China Xi'er He 25°33′43″N 100°07′52″E / 25.561991°N 100.131191°E / 25.561991; 100.131191 (Xi'er He 2 HPP) 1987 50 37 122 0.2
Xi'er He 3 China Xi'er He 25°33′31″N 100°06′28″E / 25.558584°N 100.107878°E / 25.558584; 100.107878 (Xi'er He 3 HPP) 1988 50 223 21
Xi'er He 4 China Xi'er He 25°34′35″N 100°03′56″E / 25.576262°N 100.065574°E / 25.576262; 100.065574 (Xi'er He 4 HPP) 1971 50 14
XunCun China Hei Hui Jiang 25°25′19″N 99°59′36″E / 25.421835°N 99.993301°E / 25.421835; 99.993301 (XunCun HPP) 1999 78 345 67 165 74
Zongtongka China Angqu 31°09′06″N 97°08′04″E / 31.151775°N 97.134375°E / 31.151775; 97.134375 (Zongtongka HPP) 104 451.7 71 124.6
Mong Wa Myanmar Nam Lwe 21°23′49″N 100°19′33″E / 21.396967°N 100.32584°E / 21.396967; 100.32584 (Mong Wa HPP) 2017 66 330.45 51 78 8.01
Don Sahong Laos Mekong 13°57′22″N 105°57′51″E / 13.956223°N 105.964247°E / 13.956223; 105.964247 (Don Sahong HPP) 2020 240 2,000 25 6,800 25 2.2
Houay Ho Laos Houayho/Xekong 15°03′34″N 106°45′52″E / 15.059464°N 106.764377°E / 15.059464; 106.764377 (Houayho HPP) 1999 152 450 79 3,530 37
Houay La Nge Laos Houay La-Nge 15°46′30″N 107°03′18″E / 15.774865°N 107.054896°E / 15.774865; 107.054896 (Houay La Nge HPP) 2023 60 290 58 179 14 93.6
Houay Lamphan Gnai Laos Xekong 15°21′23″N 106°29′56″E / 15.356495°N 106.498949°E / 15.356495; 106.498949 (Houay Lamphan Gnai HPP) 2015 84.8 480 77 74.5 140 9
Houay Por Laos Houay Por 15°32′44″N 106°15′24″E / 15.545605°N 106.256763°E / 15.545605; 106.256763 (Houay Por HPP) 2018 15 75 6 0.76
Lower Houay Lam Phanh Laos Houay Lamphan 15°19′17″N 106°37′48″E / 15.321515°N 106.630123°E / 15.321515; 106.630123 (Lower Houay Lam Phanh HPP) 2022 15 68 55 523 73.9
Nam Ao Laos Nam Ao 19°09′39″N 103°16′59″E / 19.160876°N 103.283107°E / 19.160876; 103.283107 (Nam Ao HPP) 2023 15 92 26 130 52 4.9
Nam Beng Laos Nam Beng 19°56′47″N 101°14′15″E / 19.946436°N 101.237563°E / 19.946436; 101.237563 (Nam Beng HPP) 2014 36 145 25.5 84.8 3,611 0.7
Nam Che 1 Laos Nam Che 19°03′17″N 103°30′49″E / 19.054645°N 103.513536°E / 19.054645; 103.513536 (Nam Che 1 HPP) 2019 16.8 23 50
Nam Chien 1 Laos Nam Che 19°08′43″N 103°33′26″E / 19.145395°N 103.557259°E / 19.145395; 103.557259 (Nam Chien 1 HPP) 2018 104 448.2 68.8 367 14
Nam Houng 1 Laos Nam Houng 19°11′24″N 101°48′23″E / 19.189914°N 101.806322°E / 19.189914; 101.806322 (Nam Young 1 HPP) 2023 15 57 1.52
Nam Khan 2 Laos Nam Khan 19°41′07″N 102°22′11″E / 19.685364°N 102.369791°E / 19.685364; 102.369791 (Nam Khan 2 HPP) 2015 130 558 160 405 30.5
Nam Khan 3 Laos Nam Khan 19°44′49″N 102°13′22″E / 19.747016°N 102.222793°E / 19.747016; 102.222793 (Nam Khan 3 HPP) 2016 88 480 77 74.5 140 9
Nam Kong 1 Laos Nam Kong 14°32′47″N 106°44′27″E / 14.546513°N 106.740933°E / 14.546513; 106.740933 (Nam Kong HPP 1) 2021 160 649 87 386 679 21.8
Nam Kong 2 Laos Nam Kong 14°29′41″N 106°51′24″E / 14.494672°N 106.856669°E / 14.494672; 106.856669 (Nam Kong HPP 2) 2018 66 264 50 210 71.4 4.2
Nam Kong 3 Laos Nam Kong 14°33′59″N 106°54′45″E / 14.566338°N 106.912551°E / 14.566338; 106.912551 (Nam Kong 3 HPP) 2021 54 204 65 500 471 32
Nam Leuk Laos Nam Leuk/Nam Ngum 18°26′15″N 102°56′48″E / 18.437406°N 102.94675°E / 18.437406; 102.94675 (Nam Leuk HPP) 2000 60 215 51.5 800 185 17.2
Nam Lik 1 Laos Nam Lik 18°37′10″N 102°23′14″E / 18.619438°N 102.387252°E / 18.619438; 102.387252 (Nam Lik 1 HPP) 2019 64 256 36.5 72 22.3
Nam Lik 1-2 Laos Nam Lik 18°47′38″N 102°07′00″E / 18.793782°N 102.116714°E / 18.793782; 102.116714 (Nam Lik 1-2 HPP) 2010 100 435 103 328 11 24.4
Nam Mang 1 Laos Nam Mang 18°32′03″N 103°11′47″E / 18.53423°N 103.196286°E / 18.53423; 103.196286 (Nam Mang 1 HPP) 2016 64 225 70 280 16.5 0.148
Nam Mang 3 Laos Nam Gnogn 18°20′58″N 102°45′55″E / 18.349383°N 102.765244°E / 18.349383; 102.765244 (Nam Mang 3 HPP) 2004 40 150 28 151 49 10
Nam Ngiep 1 Laos Nam Ngiep 18°38′45″N 103°33′08″E / 18.645828°N 103.552329°E / 18.645828; 103.552329 (Nam Ngiep 1 HPP) 2019 272 1,546 167 530 1,192 67
Nam Ngiep 1 (DS) Laos Nam Ngiep 18°38′53″N 103°34′18″E / 18.647966°N 103.571591°E / 18.647966; 103.571591 (Nam Ngiep 1 (DS) HPP) 2019 18 105 20 90 4.6 1.27
Nam Ngiep 2 Laos Nam Ngiep 19°14′36″N 103°17′02″E / 19.243328°N 103.283818°E / 19.243328; 103.283818 (Nam Ngiep 2 HPP) 2015 180 732 70.5 163
Nam Ngiep 2B Laos Nam Ngiep 19°09′21″N 103°20′46″E / 19.155918°N 103.346031°E / 19.155918; 103.346031 (Nam Ngiep 2B HPP) 2015 18 76
Nam Ngiep 3A Laos Nam Ngiep 19°14′37″N 103°17′02″E / 19.243546°N 103.283913°E / 19.243546; 103.283913 (Nam Ngiep 3A HPP) 2014 44 144 30 110 13.85 1.8
Nam Ngum 1 Laos Nam Ngum 18°31′52″N 102°32′51″E / 18.531068°N 102.547577°E / 18.531068; 102.547577 (Nam Ngum 1 HPP) 1971 315 1,455 70 468 4,700 370
Nam Ngum 2 Laos Nam Ngum 18°45′19″N 102°46′35″E / 18.755374°N 102.776476°E / 18.755374; 102.776476 (Nam Ngum 2 HPP) 2011 615 2,300 181.5 421 3,590 122.2
Nam Ngum 5 Laos Nam Ngum 19°21′22″N 102°37′16″E / 19.356095°N 102.621196°E / 19.356095; 102.621196 (Nam Ngum 5 HPP) 2012 120 507 104.5 258 314 14.6
Nam Ou 1 Laos Nam Ou 20°05′18″N 102°15′55″E / 20.0883°N 102.265379°E / 20.0883; 102.265379 (Nam Ou 1 HPP) 2019 160 710 65 442 89.1 9.56
Nam Ou 2 Laos Nam Ou 20°24′42″N 102°28′22″E / 20.411698°N 102.472817°E / 20.411698; 102.472817 (Nam Ou 2 HPP) 2016 120 546 55 352 121.7 15.7
Nam Ou 3 Laos Nam Ou 20°41′43″N 102°39′55″E / 20.695251°N 102.665404°E / 20.695251; 102.665404 (Nam Ou 3 HPP) 2020 150 685 72 340 168.6 13.26
Nam Ou 4 Laos Nam Ou 21°07′13″N 102°29′39″E / 21.120153°N 102.494173°E / 21.120153; 102.494173 (Nam Ou 4 HPP) 2020 116 524 47 300 124 9.37
Nam Ou 5 Laos Nam Ou 21°24′41″N 102°20′39″E / 21.411349°N 102.344263°E / 21.411349; 102.344263 (Nam Ou 5 HPP) 2016 240 1,049 74 335 17.22
Nam Ou 6 Laos Nam Ou 21°24′41″N 102°20′39″E / 21.411349°N 102.344263°E / 21.411349; 102.344263 (Nam Ou 6 HPP) 2016 180 739 88 409 17.01
Nam Ou 7 Laos Nam Ou 22°04′40″N 102°15′52″E / 22.07779°N 102.264436°E / 22.07779; 102.264436 (Nam Ou 7 HPP) 2020 190 811 147 825 1,494 38.16
Nam Pha Gnai Laos Nam Pha Gnai 19°00′48″N 102°15′52″E / 19.013318°N 102.264436°E / 19.013318; 102.264436 (Nam Pha Gnai HPP) 2016 19.2 130 65 148 1.5
Nam Phay Laos Nam Phay 19°06′34″N 102°45′27″E / 19.109357°N 102.757461°E / 19.109357; 102.757461 (Nam Phay HPP) 2018 86 419.5 18.92
Nam San 3A Laos Nam San 19°07′45″N 103°39′42″E / 19.129193°N 103.661752°E / 19.129193; 103.661752 (Nam San 3A HPP) 2016 69 278.4 75 350 123 8.5
Nam San 3B Laos Nam San 19°05′08″N 103°37′12″E / 19.085633°N 103.619938°E / 19.085633; 103.619938 (Nam San 3B HPP) 2015 45 198
Nam Tha 1 Laos Nam Tha 20°14′58″N 100°53′33″E / 20.249467°N 100.892433°E / 20.249467; 100.892433 (Nam Tha 1 HPP) 2018 168 759.4 93.7 349.2 1,755 113.9
Nam Tha Had Muak Laos Nam Tha 20°14′34″N 100°42′44″E / 20.24264°N 100.712302°E / 20.24264; 100.712302 (Nam Tha 1 HPP) 2022 37.5 102.67
Nam Theun 1 Laos Nam Theun 18°21′24″N 104°08′53″E / 18.356733°N 104.148017°E / 18.356733; 104.148017 (Nam Theun 1 HPP) 2022 650 2,561 177 771 2,772 93.6
Nam Theun 2 Laos Nam Theun/Xe Bangfai 17°59′50″N 104°57′08″E / 17.997353°N 104.952306°E / 17.997353; 104.952306 (Nam Theun 2 HPP) 2010 1,075 5,936 48 325 3,500 450
Theun-Hinboun Laos Nam Theun 18°15′40″N 104°33′45″E / 18.261005°N 104.562525°E / 18.261005; 104.562525 (Theun-Hinboun Hydropower Plant) 1998 220 1,645 48 810 1,300 49
Theun-Hinboun Expansion Project Laos Nam Gnouang 18°17′50″N 104°38′10″E / 18.297248°N 104.636171°E / 18.297248; 104.636171 (Theun-Hinboun Expansion Project) 2013 222 1,395 65 480 2,450 49
Xayaburi Laos Mekong 19°15′14″N 101°48′49″E / 19.254006°N 101.813699°E / 19.254006; 101.813699 (Xayaburi HPP) 2019 1,285 6,035 48 810 1,300 49
Xe Kaman 1 Laos Xe Kaman 14°57′39″N 107°09′23″E / 14.960724°N 107.156336°E / 14.960724; 107.156336 (Xe Kaman 1 HPP) 2018 290 1,096 120 185 4,804 149.8
Xe Kaman 3 Laos Xe Kaman 15°25′31″N 107°21′45″E / 15.425194°N 107.362611°E / 15.425194; 107.362611 (Xe Kaman 3 HPP) 2014 250 1,000 102 543 141.5 5.2
Xe Kaman-Sanxay Laos Xe Kaman 14°53′20″N 107°07′02″E / 14.888908°N 107.117133°E / 14.888908; 107.117133 (Xe Kaman-Sanxay HPP) 2018 32 131.2 28 180 1.76
Xe Lanong 1 Laos Xe Lanong 16°21′23″N 106°14′19″E / 16.356276°N 106.238749°E / 16.356276; 106.238749 (Xe Lanong 1 HPP) 2020 70 269.9 67.5 302 953
Xepian-Xenamnoy Laos Xepian/Xenamnoy 15°01′34″N 106°37′39″E / 15.026115°N 106.627369°E / 15.026115; 106.627369 (Xepian-Xenamnoy HPP) 2019 427 1,788 73 1,600 1,043 50.6
Xe Nam Noy - Xe Katam Laos Xenamnoi/Xekatam 15°07′05″N 106°37′00″E / 15.117928°N 106.616688°E / 15.117928; 106.616688 (Xepian-Xenamnoy HPP) 2016 20.1 83
Xeset 1 Laos Xeset 15°29′31″N 106°16′43″E / 15.49200°N 106.27867°E / 15.49200; 106.27867 (Xeset 1 HPP) 1994 45 154 18 124
Xeset 2 Laos Xeset 15°24′14″N 106°16′49″E / 15.403775°N 106.280332°E / 15.403775; 106.280332 (Xeset 1 HPP) 2009 76 309 26 144
Xeset 3 Laos Xe Don 15°20′32″N 106°18′40″E / 15.342113°N 106.31115°E / 15.342113; 106.31115 (Xeset 3 HPP) 2017 23 80 11 1.3
Chulabhorn Thailand Nam Phrom 16°32′11″N 101°39′00″E / 16.536267°N 101.650036°E / 16.536267; 101.650036 (Chulabhorn HPP) 1972 40 93 70 700 165 31
Lam Ta Khong Thailand Lam Ta Khong 14°51′55″N 101°33′37″E / 14.865175°N 101.560303°E / 14.865175; 101.560303 (Lam Ta Khong HPP) 1974 500 400 40.3 251 310 37
Pak Mun Thailand Mun 15°16′55″N 105°28′05″E / 15.2818942°N 105.468058°E / 15.2818942; 105.468058 (Pak Mun HPP) 1994 136 280 17 300
Sirindhorn Thailand Lam Dom Noi 15°12′23″N 105°25′45″E / 15.206339°N 105.429156°E / 15.206339; 105.429156 (Siridhorn HPP) 1971 36 86 42 940 1,967 288
Ubol Ratana Thailand Nam Pong 16°46′31″N 102°37′06″E / 16.775394°N 102.618325°E / 16.775394; 102.618325 (Ubol Ratana HPP) 1966 25.2 57 35.1 885 2,559 410
A Luoi Vietnam A Sap 16°11′51″N 107°09′43″E / 16.197619°N 107.161897°E / 16.197619; 107.161897 (A Luoi HPP) 2012 170 686 49.5 208
Buon Kuop Vietnam Sre Pok 12°31′30″N 107°55′33″E / 12.52504°N 107.925762°E / 12.52504; 107.925762 (Buon Kop HPP) 2009 280 1,455 34 1,828 37 5.57
Buon Tua Sra Vietnam Se San/Krong Po Ko 12°16′56″N 108°02′29″E / 12.282116°N 108.041299°E / 12.282116; 108.041299 (Buon Tua Srah HPP) 2009 86 359 83 1,041 787 41
Dray Hlinh 2 Vietnam Sre Pok 12°40′33″N 107°54′14″E / 12.6757°N 107.903978°E / 12.6757; 107.903978 (Dray Hinh 2 HPP) 2007 16 85
Hòa Phú Vietnam Sre Pok 12°38′59″N 107°54′33″E / 12.64967°N 107.909128°E / 12.64967; 107.909128 (Hòa Phú HPP) 2014 29 132 12 384.5 5 1.6
Krông Nô 2 Vietnam Krong No 12°15′16″N 108°21′20″E / 12.254355°N 108.355469°E / 12.254355; 108.355469 (Krông Nô 2 HPP) 2016 30 109 9.3
Krông Nô 3 Vietnam Krong No 12°15′16″N 108°21′20″E / 12.254355°N 108.355469°E / 12.254355; 108.355469 (Krông Nô 3 HPP) 2016 18 63.5 42 260 20 1.75
Plei Krong Vietnam Se San/Krong Po Ko 14°24′30″N 107°51′47″E / 14.408227°N 107.862991°E / 14.408227; 107.862991 (Plei Krong HPP) 2008 100 479 65 745 1,049 53
Sesan 3 Vietnam Se San 14°12′57″N 107°43′19″E / 14.215816°N 107.722061°E / 14.215816; 107.722061 (Sesan 3 HPP) 2006 260 1,224 79 6.4
Sesan 3A Vietnam Se San 14°06′23″N 107°39′28″E / 14.106475°N 107.657753°E / 14.106475; 107.657753 (Sesan 3A HPP) 2007 96
Sesan 4 Vietnam Se San 13°58′06″N 107°29′43″E / 13.968252°N 107.49516°E / 13.968252; 107.49516 (Sesan 4 HPP) 2009 360 60 54
Sesan 4A Vietnam Se San 13°56′00″N 107°28′01″E / 13.933374°N 107.46683°E / 13.933374; 107.46683 (Sesan 4 HPP) 2009 360 60 54
Sre Pok 3 Vietnam Sre Pok 12°45′08″N 107°52′36″E / 12.752344°N 107.876769°E / 12.752344; 107.876769 (Sre Pok 3 HPP) 2009 220 52.5
Sre Pok 4 Vietnam Sre Pok 12°48′26″N 107°51′19″E / 12.807331°N 107.855308°E / 12.807331; 107.855308 (Sre Pok 4 HPP) 2009 600 329.3 155 860 114 150
Sre Pok 4A Vietnam Sre Pok 12°53′36″N 107°48′44″E / 12.893464°N 107.812294°E / 12.893464; 107.812294 (Sre Pok 4A HPP) 2014 308.35 4
Upper Kontum Vietnam Se San/Dak Bla/Dak Ngh 14°41′39″N 108°13′48″E / 14.694291°N 108.229879°E / 14.694291; 108.229879 (Upper Kontum HPP) 2011 250 1,056.4 73 392 174 7.08
Yali Falls Vietnam Se San 14°13′39″N 107°49′47″E / 14.227481°N 107.829597°E / 14.227481; 107.829597 (Yali Falls HPP) 2001 720 3,658.6 65 1,460 1,073 64.5
Yan-Tann-Sien Vietnam Yan-Tann-Sien 12°09′10″N 108°22′43″E / 12.152824°N 108.37866°E / 12.152824; 108.37866 (Yan-Tann-Sien HPP) 2010 19.5 79

Notes: COD = Commercial Operating Date

Hydropower infrastructure under construction in the Mekong River Basin

Table 3: Hydropower dams under construction in the Mekong River Basin (15 MW installed capacity and above)[29]

Project Country River Location COD Installed capacity (MW) Mean Annual Energy (GWh) Height (m) Crest length (m) Total storage (million m3) Max reservoir area (km2)
Pursat 1 Cambodia Pursat 12°17′07″N 103°17′56″E / 12.285408°N 103.298828°E / 12.285408; 103.298828 (Pursat 1 Dam) 2026 80 361 100 687 1,039
Charikou China Tsichu 32°40′12″N 96°33′42″E / 32.670005°N 96.561546°E / 32.670005; 96.561546 (Charikou Dam) ? 54 121.4 198.48 421
Jiaoba China Dengqu 29°34′46″N 98°18′22″E / 29.579527°N 98.306028°E / 29.579527; 98.306028 (Jiaoba Dam) ? 60 50
Tuoba China Mekong 27°11′39″N 99°06′27″E / 27.194231°N 99.107516°E / 27.194231; 99.107516 (Tuoba Dam) 2025 1,400 6,200 158 396 1,039
Houay Kaouane Laos 20°04′00″N 102°11′32″E / 20.06663°N 102.192339°E / 20.06663; 102.192339 (Houay Kaouane) ? 24
Luang Prabang Laos Mekong 20°04′00″N 102°11′32″E / 20.06663°N 102.192339°E / 20.06663; 102.192339 (Luang Prabang Dam) 2030 1,460 6,500 80 275 1,589.5 72.39
Nam Ang Laos Nam Ang 15°07′21″N 107°06′31″E / 15.122545°N 107.108512°E / 15.122545; 107.108512 (Nam Ang Dam) 2024 31 183.3 0.03
Nam Emoun Laos Nam Emoun 15°34′27″N 106°58′10″E / 15.5743°N 106.969395°E / 15.5743; 106.969395 (Nam Emoun Dam) 2025 131.5 460.59 29 127 0.07 0.16
Nam Hinboun 1 Laos Nam Hinboun 17°43′42″N 104°34′17″E / 17.728201°N 104.571382°E / 17.728201; 104.571382 (Nam Hinboun 1 Dam) 2024 15 79.74 33 70
Nam Hinboun 2 Laos Nam Hinboun 18°01′25″N 104°25′30″E / 18.023739°N 104.425006°E / 18.023739; 104.425006 (Nam Hinboun 2 Dam) ? 30 155.2 38 2.57
Nam Ngao Laos Nam Hinboun 20°23′54″N 100°25′55″E / 20.398288°N 100.431852°E / 20.398288; 100.431852 (Nam Ngao Dam) ? 15 81.1 69 438.6 2.57
Nam Ngum 3 Laos Nam Ngum 19°05′03″N 102°52′44″E / 19.084097°N 102.878817°E / 19.084097; 102.878817 (Nam Ngum 3 Dam) 2024 480 2,345 220 395 1,411 27.51
Nam Ngum 4 Laos Nam Ngum 19°27′14″N 103°00′37″E / 19.453804°N 103.010325°E / 19.453804; 103.010325 (Nam Ngum 4 Dam) 2024 240 872 74 110
Nam Phan (Bolevan) Laos Nam Phak 15°04′32″N 106°08′21″E / 15.075548°N 106.139196°E / 15.075548; 106.139196 (Nam Phan Dam) 2025 168 788
Nam Pot 1 Laos Nam Pot 19°09′19″N 103°15′59″E / 19.15518°N 103.266356°E / 19.15518; 103.266356 (Nam Pot 1 Dam) ? 20 92 4.9
Xe Lanong 2 Laos Xe Lanong 16°17′31″N 106°31′04″E / 16.291893°N 106.517774°E / 16.291893; 106.517774 (Xe Lanong 2 Dam) ? 35 143 55
Xekong A (DS) Laos Xekong 14°35′57″N 106°33′15″E / 14.599171°N 106.554175°E / 14.599171; 106.554175 (Xekong A (DS)) 2025 86 334.7 8.5 95.03 25.4
Xekong 4B (DS) Laos Xekong 15°44′39″N 106°44′55″E / 15.744284°N 106.748666°E / 15.744284; 106.748666 (Xekong 4B) 2027 175 801 117 1,004.7 22.4

Notes: COD = Commercial Operating Date

Environmental impacts of Mekong hydropower

The environmental impacts of Mekong hydropower development are generally well studied and understood. Below, four of the most important are addressed although there are additional impacts (for example, impacts of forestry as a result of reservoir clearance, and greenhouse gas emissions):

River connectivity: 'connectivity' refers to the degree to which matter and organisms can move among spatially defined units in a natural system. ‘River connectivity’ is typically described as longitudinal (between a river's main channel and its floodplains), lateral (between upstream areas in the river channel or catchment, and downstream ones), and vertical (within the water column, between upper water layers and lower ones.[30][31] River connectivity can be conceptualised as a continuum from 'fully connected' to 'disconnected'. River connectivity strongly influences the resistance and resilience of rivers to natural and human-induced disturbances.[31]

Dams interrupt connectivity, and so fish cannot swim upstream to spawn or breed; dams affect water quality in a variety of ways, altering upstream ecosystems so that they contrast starkly with downstream ones. Dam reservoirs are lacustrine (lake-like) environments unlike rapidly flowing waters downstream; upstream, the water is heavy with sediments, while downstream it is not; above the dam, the water is cold, while below it, it is warmer.

A 2014 study paper by Günter Grill and his colleagues (2014) explores an HPP build-out of 81 proposed dams across the Mekong Basin.[32] If this were to occur, it would reduce the Mekong’s connectivity to just 11% by 2022. This build-out – already well advanced – would make the Mekong one of the most heavily impounded rivers in the world.

Hydrological impacts: about 75% of annual flows through the Mekong system occur between late June and early November,[33][34] which drives ecological productivity throughout the system.[35][36]. This surge of water is known as the 'flood pulse' and dams (of all kinds) will contribute to its diminution. Wet season flows can be expected to reduce, while dry season flows can be expected to increase.[37] This has significant implications for the Mekong's ecology.

Fisheries impacts: the Mekong’s fisheries are threatened in multiple ways, most importantly by dams and excessive fishing pressure.[38] Dams affect fisheries by:[39]

  • Acting as barriers to fish migration - either as fish try to migrate upstream to spawn; or for trapping fish fry or eggs as these travel downstream.
  • Interrupting natural flood cycles to which fish have evolved and adapted to over thousands of years.
  • Riverbed hardening. Dams typically release water in bursts, which removes smaller sediments like silt, sand, and gravel, as well as aquatic plants and animals and debris from vegetation. As a result, the bedrock below the dam becomes exposed and loses its value as a fish habitat.
  • Trapping sediment, a significant source of nutrition for fish. [40]
  • Altering water temperature. Water released from a dam is typically colder than prevailing temperatures downstream of the dam. This has a direct impact on fish habitats and populations.
  • Hydropeaking, which refers to the release of water from HPPs when demand is highest (usually during the day), and much smaller releases when demand is low. This also affects fisheries through the rapid alteration and high and low river flows. Globally, hydropeaking has been found to impact fish biodiversity, and fish community composition.[39][41][42]

The fisheries impact of all existing and planned mainstream dams will be most felt in Cambodia (which will experience three-quarters of the loss), while the balance will be experienced in Vietnam, Lao PDR and Thailand.[42] In terms of tonnages, this will represent a loss of between 580-750,000 Mt per year.[42]

In another study by the Mekong River Commission, fisheries assessments conducted in 2020 suggested that the annual finfish yield from the lower Mekong (i.e. those parts of the basin that fall within Cambodia, Laos, Thailand and Vietnam)) was between 1.51 to 1.71 million tonnes, while the harvest of other aquatic animals (OAAs) was approximately 443,000 tons. This is approximately 25-30% less than yield estimates conducted in 2000 and 2010. The estimated value of the fish catch varies from USD 7.13 billion to USD 8.37 billion annually. In addition, the estimated value of the OAA harvest is approximately USD 1.13 billion.[43]

Sediment impacts: in the Mekong, some 40% of the sediments that reach the Mekong Delta are derived from the Three Parallel Rivers area in Yunnan, while some 52% come from the [[Central Highlands (Vietnam)|Central Highlands of Vietnam[44]. The balance comes from those parts of the basin in northern Thailand, and the Tibetan gorges. [44][45] Sediment loads are lowest during the dry season and highest during the first months of the flood season, when loose sediments weathered during the dry season are washed into rivers. [44][46]

Although suspended sediment concentrations in the Mekong have been monitored since 1994, the ‘pre-disturbance’ sediment load is unknown. Nevertheless, studies can demonstrate very significant declines in the Mekong’s sediment load since 2001. At Chiang Saen, sediment flows have decreased from about 85 million metric tonnes per year (Mt/yr) to 10.8 million Mt/yr, meaning that the sediment contributions from China to the Mekong mainstream has decreased to about 16% of all sediments in the Lower Mekong as compared to about 55% historically. [47]A similar trend is seen down-stream at Pakse, where average loads have decreased from 147 Mt/yr to 66 Mt/yr between 1994 and 2013.[47]

The declining sediment load has significant implications for the Mekong Delta, recharging sediments otherwise washed away by the sea, consumed by sea-level rise, or in combination with land subsidence. Studies of the possible long-term consequences of system-wide sediment reductions suggest that it is likely that nearly half of the Delta's land surface will be below sea level by 2100, with the remaining areas impacted by saline intrusion from the sea and frequent flooding.[45] Much of the Mekong’s sediment decline is attributed to the the 'trapping efficiency' of dams.[45][47][48][49]

Social Impacts

Social impacts such as livelihood and food insecurity largely effect riparian communities because of hydropower projects and these effects are multiplied by environmental issues of decreased water quality, decreased fish quantity and unstable water flow.[50] Loss of livelihood has become more significant as more dams are constructed along the Mekong River and this has become more evident by the change in the river's biodiversity.[51] For example, fisherman in a town in northeastern Thailand (Isan) estimate that their 2015 fish yield was only 30% of a normal year.[52] The villagers of this same town also experience vulnerability in their cultural patterns as irregular flooding causes holidays and celebrations based on a water calendar to no longer coincide.[53] Villages near dams experience other social issues alongside livelihood and food insecurity. A study of the Xe Pian Xe Namnoy Dam found that local communities face forced relocation, economic loss, livelihood insecurities, PTSD, food insecurity, and UXOs.[51][54] Due to PTSD and psychological impacts incurred, many villagers also hesitate to return to their former villages and the stress about the present has resulted in increased anxiety over the future.[55] As for food insecurity, the changing of the river flow due to hydropower projects has severely influenced agriculture and aquaculture as necessary nutrients for rice cultivation and fishery production are limited.[56] Issues of food and livelihood security are also faced by those relocated. In Laos, the Nam Theun 2 Dam project moved 6300 people from 14 villages on the Nakai Plateau as part of the Resettlement Programme and another 155,000 people along the Xe Bangfai River were identified as affected but were given less financial support.[57] The Nam Theun 2 Hydropower Company (NTPC) and the GoL implemented the resettlement programme but the Livelihood Resettlement Program’s 5 pillars designed for livelihood (forestry, fisheries, agriculture, livestock and off-farm activities), showed consistent failure in providing benefits and instead led to increased poverty levels. The Livelihood Resettlement Program is also at odds with the community's cultural practices which has caused additional vulnerability.[57][58] The social impacts of hydropower projects permeate many different sectors of society and particularly those of riparian communities as they are not properly taken into account.[54]

See also

References

  1. ^ "Mekong Mainstream Dams". International Rivers. Retrieved 2017-09-09.
  2. ^ Mekong River Commission (2010). "State of the Basin Report, 2010" (PDF). MRC, Vientiane, Laos.
  3. ^ J. Dore; Y. Xiaogang; K. Yuk-shing (2007). "China's energy reforms and hydropower expansion in Yunnan". In L. Lebel; J. Dore; R. Daniel; Y.S. Koma (eds.). Democratizing Water Governance in the Mekong Region. Chiang Mai: Silkworm Books. pp. 55–92. ISBN 978-9749511251.
  4. ^ CGIAR Challenge Program on Water and Food. "CPWF Mekong". Archived from the original on April 28, 2012. Retrieved May 19, 2012.
  5. ^ "Thousands Call for Regional Governments to Save the Mekong". International Rivers. Retrieved 2017-09-09.
  6. ^ "A Dangerous Trajectory for the Mekong River". International Rivers. Retrieved 2017-09-09.
  7. ^ Yeophantong, Pichamon (2014). "China's Lancang Dam Cascade and Transnational Activism in the Mekong Region: Who's Got the Power?". Asian Survey. 54 (4): 700–24. doi:10.1525/as.2014.54.4.700.
  8. ^ Hennig, Thomas; Wang, Wenling; Magee, Darrin; He, Damming (2016). "Yunnan's Fast-Paced Large Hydropower Development: A Powershed-Based Approach to Critically Assessing Generation and Consumption Paradigms". Water. 8 (10): 476. doi:10.3390/w8100476. ISSN 2073-4441.
  9. ^ Magee, Darrin (2006). "Powershed Politics: Yunnan Hydropower under Great Western Development". The China Quarterly. 185 (2006): 23–41. doi:10.1017/S0305741006000038.
  10. ^ Tilt, Brian (2015). Dams and development in China: the moral economy of water and power. New York: Colombia University Press. ISBN 978-0-231-17010-9.
  11. ^ a b Liu, Shuangquan; Davidson, Michael (2021). China trading power: improving environmental and economic efficiency of Yunnan's electricity market (PDF) (Report). Environment and Natural Resources Program, Belfer Center for Science and International Affairs, Harvard Kennedy School. Retrieved February 8, 2024.
  12. ^ Cheng, Chuntian; Chen, Fu; Li, Gang; Ristić, Bora; Mirchi, Ali; Qiyu, Tu; Madani, Kaveh (2018). "Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market". Renewable and Sustainable Energy Reviews. 94 (2018): 682–693. doi:10.1016/j.rser.2018.06.033.
  13. ^ "Laos: electricity exports". Retrieved February 8, 2024.
  14. ^ BOL (2023). Annual Economic Report 2022 (PDF) (Report). Bank of the Lao PDR. Retrieved January 12, 2024.
  15. ^ "Department of Investment Promotion, Ministry of Planning and Investment (Lao PDR) Statistics". Retrieved 28 January 2024.
  16. ^ Future Forum, Cambodia (April 2021). Chinese State-Owned Enterprises and Infrastructure Development in Cambodia: The Tatay River Hydropower Dam Project (PDF) (Report). BRI Monitor. Retrieved February 10, 2024.
  17. ^ Siciliano, Giuseppina; Urban, Frauke; Tan-Mullins, May; Lonn, Pichdara; Kim, Sour (2016). "The Political Ecology of Chinese Large Dams in Cambodia: Implications, Challenges and Lessons Learnt from the Kamchay Dam". Water. 8 (9): 405. doi:10.3390/w8090405.
  18. ^ "Hydropower Lower Sesan II". Retrieved 8 February 2024.
  19. ^ "Cambodian PM Affirms Ban on Mekong Hydropower Projects". The Diplomat. December 1, 2023.
  20. ^ Thul, Prak Chan (8 January 2020). "Don Sahong hydropower dam in Laos connects to Cambodian grid". Reuters. Retrieved 10 February 2024.
  21. ^ Molle, François; Floch, Philippe (2008). "Megaprojects and Social and Environmental Changes: The Case of the Thai 'Water Grid'". AMBIO: A Journal of the Human Environment. 37 (3): 199–204. doi:10.1579/0044-7447(2008)37[199:MASAEC]2.0.CO;2.
  22. ^ Wangkiat, Paritta (8 May 2016). "Downstream countries concerned over water diversion". Bangkok Post. Retrieved 10 February 2024.
  23. ^ Lan, Mai (6 June 2016). "Diverting the Mekong River into Thailand: The Khong-Loei-Chi-Mun project". Mekong Commons. Retrieved 10 February 2024.
  24. ^ Simpson, Adam (2007). "The environment – energy security nexus: critical analysis of an energy 'love triangle' in Southeast Asia". Third World Quarterly. 28 (3): 539–554. doi:10.1080/01436590701192710.
  25. ^ Kirchherr, Julian; Pomun, Teerapong; Walton, Matthew J. (2016). "Mapping the Social Impacts of 'Damocles Projects': The Case of Thailand's (as yet Unbuilt) Kaeng Suea Ten Dam". Journal of International Development. 30 (3): 474–492. doi:10.1002/jid.3246.
  26. ^ IFC (2018). Strategic Environmental Assessment of the Myanmar Hydropower Sector - Final Report (Report). International Finance Corporation. Retrieved February 10, 2024.
  27. ^ ICEM (2010). Strategic Environmental Impact Assessment for Hydropower on the Mekong Mainstream - Final Report (PDF) (Report). Mekong River Commission. Retrieved February 8, 2024.
  28. ^ HDR; DHI (2015). Study on the Impacts of Mainstream Hydropower on the Mekong River (PDF) (Report). Ministry of Natural Resources and the Environment (Vietnam). Retrieved February 8, 2024.
  29. ^ a b "WLE, 2016. Dataset on the Dams of the Irrawaddy, Mekong, Red and Salween River Basins. Vientiane, Lao PDR: CGIAR Research Program on Water, Land and Ecosystems - Greater Mekong". CGIAR Research Program on Water, Land and Ecosystems (Greater Mekong). Retrieved 2018-04-04.
  30. ^ Seliger, Carina; Zeiringer, Bernhard (2009). "River Connectivity, Habitat Fragmentation and Related Restoration Measures". In Schmutz, Stefan; Sendzimir, Jan (eds.). Riverine ecosystem management: science for Governing towards a sustainable future (PDF). Cham: SpringerOpen. pp. 171–186. ISBN 978-3-319-73250-3.
  31. ^ a b Wohl, Ellen (June 15, 2017). "Connectivity in rivers". Progress in Physical Geography: Earth and Environment. 41 (3): 345–362. doi:10.1177/0309133317714972.
  32. ^ Grill, Günter; Ouellet Dallaire, Camille; Fluet Chouinard, Etienne; Sindorf, Nikolai \last5=Lehner \first5=Berhard (2014). "Development of new indicators to evaluate river fragmentation and flow regulation at large scales: A case study for the Mekong River Basin". Ecological Indicators. 45 (2014): 148–159. doi:10.1016/j.ecolind.2014.03.026.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  33. ^ Piman, Thanapon; Cochrane, Thomas A.; Arias, Maricio E.; Green, Anthony; Dat, N.D. (1999). "Assessment of Flow Changes from Hydropower Development and Operations in Sekong, Sesan, and Srepok Rivers of the Mekong Basin". Journal of Water Resources Planning and Management. 139 (6): 723–732. doi:10.1061/(ASCE)WR.1943-5452.0000286.
  34. ^ MRC (2005). Overview of the Hydrology of the Mekong Basin (PDF) (Report). Mekong River Commission. Retrieved 2024-02-12.
  35. ^ Campbell, Ian C. (2009). "Introduction". In Campbell, Ian C. (ed.). The Mekong: biophysical environment of an international river basin. Amsterdam: Academic Press. pp. 1–11. ISBN 978-0-12-374026-7.
  36. ^ Stone, Richard (August 12, 1999). "Mayhem on the Mekong". Science. 333 (6044): 814–818. doi:10.1126/science.333.6044.814.
  37. ^ Hecht, Jory S.; Lacombe, Guillaume; Arias, Mauricio E.; Dang, Thanh Duc; Piman, Thanapon (2019). "Hydropower dams of the Mekong River basin: A review of their hydrological impacts". Journal of Hydrology. 568 (2019): 285–300. doi:10.1016/j.jhydrol.2018.10.045.
  38. ^ Ngor, Peng Bun; McCann, Kevin S.; Grenouillet, Gaël; So, Nam; McMeans, Bailey C.; Fraser, Evan; Lek, Sovan (2018). "Evidence of indiscriminate fishing effects in one of the world's largest inland fisheries". Scientific Reports. 8 (1): 8947. doi:10.1038/s41598-018-27340-1.
  39. ^ a b Pukinskis, Ilse; Geheb, Kim (2012). "The Impacts of Dams on the Fisheries of the Mekong". CGSpace. Vientiane: WLE Greater Mekong. Retrieved 2024-02-12.
  40. ^ Baran, Eric; Guerin, Eric; Nasielski, Joshua (2015). Fish, sediment and dams in the Mekong (PDF) (Report). Penang: WorldFish and WLE Greater Mekong. Retrieved 2024-02-12.
  41. ^ World Commission on Dams (2000). Dams and development - a new framework for decision-making. The Report of the World Commission on Dams (PDF). London: Earthscan. ISBN 9781853837982. Retrieved 12 February 2024.
  42. ^ a b c Yoshida, Yuichiro; Lee, Han Soo; Trung, Bui Huy; Tran, Hoang-Dung; Lall, Marian Keshlav; Kakar, Kifayatullah; Xuan, Tran Dung (2020). "Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin". Sustainability. 12 (6): 2408. doi:10.3390/su12062408.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  43. ^ MRC (2020). Assessment of fisheries yield in the lower Mekong River Basin 2020 (PDF) (Report). Vientiane: Mekong River Commission. Retrieved 2024-02-12.
  44. ^ a b c MRC (2010). State of the Basin Report 2010 (PDF) (Report). Vientiane: Mekong River Commission. Retrieved 2024-02-13.
  45. ^ a b c Kondolf, George M.; Rubin, Zan K.; Minear, J. Toby (2014). "Dams on the Mekong: Cumulative sediment starvation". Environmental Management. 50 (6): 5158–5169. doi:10.1002/2013WR014651.
  46. ^ Kummu, Matti; Varis, Olli (2007). "Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River". Geomorphology. 85 (3–4): 275–293. doi:10.1016/j.geomorph.2006.03.024.
  47. ^ a b c MRC (2019). State of the Basin Report 2018 (PDF) (Report). Vientiane: Mekong River Commission. Retrieved 2024-02-14.
  48. ^ Allison, Mead; Nittrouer, Charles; Ogston, Andrea; Mullarney, Julia; Nguyen, Thanh (2017). "Sedimentation and Survival of the Mekong Delta: A Case Study of Decreased Sediment Supply and Accelerating Rates of Relative Sea Level Rise". Oceanography. 30 (3): 98–109. doi:10.5670/oceanog.2017.318.
  49. ^ Piman, Thanapon; Shrestha, Manish (2017). Case study on sediment in the Mekong River Basin: Current state and future trends (PDF) (Report). Stockholm: Stockholm Environment Institute. Retrieved 2024-02-14.
  50. ^ Soukhaphon, Akarath; Baird, Ian G.; Hogan, Zeb S. (January 2021). "The Impacts of Hydropower Dams in the Mekong River Basin: A Review". Water. 13 (3): 265. doi:10.3390/w13030265. ISSN 2073-4441.
  51. ^ a b Soukhaphon, Akarath; Baird, Ian G.; Hogan, Zeb S. (2021-01-22). "The Impacts of Hydropower Dams in the Mekong River Basin: A Review". Water. 13 (3): 265. doi:10.3390/w13030265. ISSN 2073-4441.
  52. ^ Johnson, Andrew Alan (September 2019). ""The river grew tired of us"". HAU: Journal of Ethnographic Theory. 9 (2): 390–404. doi:10.1086/706045. ISSN 2575-1433. S2CID 213367918 – via HAU.
  53. ^ Johnson, Andrew Alan (2019-11-13). "The river grew tired of us: Spectral flows along the Mekong River". HAU: Journal of Ethnographic Theory. 9 (2): 390–404.
  54. ^ a b Baird, Ian G. (2020-10-21). "Catastrophic and slow violence: thinking about the impacts of the Xe Pian Xe Namnoy dam in southern Laos". The Journal of Peasant Studies. 48 (6): 1167–1186. doi:10.1080/03066150.2020.1824181. ISSN 0306-6150. S2CID 226325997.
  55. ^ Baird, Ian G. (2021-09-19). "Catastrophic and slow violence: thinking about the impacts of the Xe Pian Xe Namnoy dam in southern Laos". The Journal of Peasant Studies. 48 (6): 1167–1186.
  56. ^ Cosslett, Tuyet L.; Cosslett, Patrick D. (2014). Water Resources and Food Security in the Vietnam Mekong Delta. doi:10.1007/978-3-319-02198-0. ISBN 978-3-319-02197-3.
  57. ^ a b Blake, David J. H.; Barney, Keith (2021-06-01). "Impounded rivers, compounded injustice: contesting the social impacts of hydraulic development in Laos". International Journal of Water Resources Development: 1–22. doi:10.1080/07900627.2021.1920373. ISSN 0790-0627. S2CID 236331928.
  58. ^ Hunt, Glenn; Samuelsson, Marika; Higashi, Satomi (2018). "Broken Pillars: The Failure of the Nakai Plateau Livelihood Resettlement Program/Glenn Hunt, Marika Samuelsson, and Satomi Higashi". In Hirsch, Philip; Shoemaker, Bruce; Robichaud, William (eds.). Dead in the Water: Global Lessons from the World Bank's Model Hydropower Project in Laos. Madison, Wisconsin: University of Wisconsin Press. ISBN 978-0-299-31793-5. OCLC 1040031855.

External links