Jump to content

Photosymbiosis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Slightly changed wording
Tags: Mobile edit Mobile web edit
Cgdice (talk | contribs)
Added overview of photosymbiosis in Cnidarians, lichens, and sponges
Line 33: Line 33:


When one organism lives within another symbiotically it’s called [[endosymbiosis]]. Photosymbiotic relationships where [[microalgae]] and/or [[cyanobacteria]] live within a [[heterotrophic]] [[host (biology)|host]] organism, are believed to have led to [[eukaryotes]] acquiring photosynthesis and to the [[evolution of plants|evolution]] of [[plants]].<ref>{{cite journal |last=Decelle |first=Johan|title=New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?|journal=Communicative & Integrative Biology |date=2013 |volume=6 |issue=4 |pages=e24560 |doi=10.4161/cib.24560 |pmid=23986805 |pmc=3742057 }}</ref><ref>{{cite web | author= Basic Biology | title= Bacteria | date= 18 March 2016 | url=https://basicbiology.net/micro/microorganisms/bacteria}}</ref>
When one organism lives within another symbiotically it’s called [[endosymbiosis]]. Photosymbiotic relationships where [[microalgae]] and/or [[cyanobacteria]] live within a [[heterotrophic]] [[host (biology)|host]] organism, are believed to have led to [[eukaryotes]] acquiring photosynthesis and to the [[evolution of plants|evolution]] of [[plants]].<ref>{{cite journal |last=Decelle |first=Johan|title=New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?|journal=Communicative & Integrative Biology |date=2013 |volume=6 |issue=4 |pages=e24560 |doi=10.4161/cib.24560 |pmid=23986805 |pmc=3742057 }}</ref><ref>{{cite web | author= Basic Biology | title= Bacteria | date= 18 March 2016 | url=https://basicbiology.net/micro/microorganisms/bacteria}}</ref>

== Occurrence in Nature ==
[[Lichen|Lichens]] represent an association between one or more [[Fungus|fungal]] mycobionts and one or more photosynthetic algal or cyanobacterial photobionts. The mycobiont provides protection from predation and desiccation, while the photobiont provides energy in the form of fixed carbon. Cyanobacterial partners are also capable of [[Nitrogen fixation|fixing nitrogen]] for the fungal partner<ref name=":0">{{Cite journal |last=Spribille |first=Toby |last2=Resl |first2=Philipp |last3=Stanton |first3=Daniel E. |last4=Tagirdzhanova |first4=Gulnara |date=2022-06 |title=Evolutionary biology of lichen symbioses |url=https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18048 |journal=New Phytologist |language=en |volume=234 |issue=5 |pages=1566–1582 |doi=10.1111/nph.18048 |issn=0028-646X}}</ref>. Recent work suggests that non-photosynthetic bacterial [[Microbiome|microbiomes]] associated with lichens may also have functional significance to lichens (Grube et al. 2015). Most mycobiont partners derive from the [[Ascomycota|ascomycetes]], and the largest class of lichenized fungi is [[Lecanoromycetes]]<ref name=":1">{{Cite journal |last=Miadlikowska |first=Jolanta |last2=Kauff |first2=Frank |last3=Högnabba |first3=Filip |last4=Oliver |first4=Jeffrey C. |last5=Molnár |first5=Katalin |last6=Fraker |first6=Emily |last7=Gaya |first7=Ester |last8=Hafellner |first8=Josef |last9=Hofstetter |first9=Valérie |last10=Gueidan |first10=Cécile |last11=Otálora |first11=Mónica A.G. |last12=Hodkinson |first12=Brendan |last13=Kukwa |first13=Martin |last14=Lücking |first14=Robert |last15=Björk |first15=Curtis |date=2014-10 |title=A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families |url=https://linkinghub.elsevier.com/retrieve/pii/S1055790314001298 |journal=Molecular Phylogenetics and Evolution |language=en |volume=79 |pages=132–168 |doi=10.1016/j.ympev.2014.04.003 |pmc=PMC4185256 |pmid=24747130}}</ref>. The vast majority of lichens derive photobionts from [[Chlorophyta]] (green algae)<ref name=":0" />. The co-evolutionary dynamics between mycobionts and photobionts are still unclear, as many photobionts are capable of free-living, and many lichenized fungi display traits adaptive to lichenization such as the capacity to withstand higher levels of [[reactive oxygen species]] (ROS), the conversion of sugars to [[Polyol|polypols]] that help withstand dedication, and the downregulation of fungal [[virulence]]. However, it is still unclear whether these are derived from adaptive or preadaptive traits<ref name=":0" />. Currently described photobiont species number about 100, far less than the 19,000 described species of fungal mycobionts, and factors such as geography can predominate over mycobiont preference<ref>{{Cite journal |last=Yahr |first=Rebecca |last2=Vilgalys |first2=Rytas |last3=DePriest |first3=Paula T. |date=2006-09 |title=Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis |url=https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2006.01792.x |journal=New Phytologist |language=en |volume=171 |issue=4 |pages=847–860 |doi=10.1111/j.1469-8137.2006.01792.x |issn=0028-646X}}</ref><ref>{{Cite journal |last=Sanders |first=William B. |last2=Masumoto |first2=Hiroshi |date=2021-09 |title=Lichen algae: the photosynthetic partners in lichen symbioses |url=https://www.cambridge.org/core/product/identifier/S0024282921000335/type/journal_article |journal=The Lichenologist |language=en |volume=53 |issue=5 |pages=347–393 |doi=10.1017/S0024282921000335 |issn=0024-2829}}</ref>. Phylogenetic analyses in lichenized fungi have suggested that, throughout evolutionary history, there has been repeated loss of photosymbionts, switching of photosymbionts, and independent lichenization events in previously unrelated fungal taxa<ref name=":1" /><ref name=":2">{{Cite journal |last=Nelsen |first=Matthew P. |last2=Lücking |first2=Robert |last3=Boyce |first3=C. Kevin |last4=Lumbsch |first4=H. Thorsten |last5=Ree |first5=Richard H. |date=2020-09 |title=The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens |url=https://pnas.org/doi/full/10.1073/pnas.2001913117 |journal=Proceedings of the National Academy of Sciences |language=en |volume=117 |issue=35 |pages=21495–21503 |doi=10.1073/pnas.2001913117 |issn=0027-8424 |pmc=PMC7474681 |pmid=32796103}}</ref>. Loss of lichenization has likely led to the coexistence of non-lichenized fungi and lichenized fungi in lichens<ref name=":2" />.

[[Sponge|Sponges]] (phylum Porifera) have a large diversity of photosymbiote associations. Photosymbiosis is found in four classes of Porifera ([[Demosponge|Demospongiae]], [[Hexactinellid|Hexactinellida]], [[Homosclerophorida|Homoscleromorpha]], and [[Calcareous sponge|Calcarea]]), and known photosynthetic partners are cyanobacteria, [[Chloroflexota|chloroflexi]], [[Dinoflagellate|dinoflagellates]], and red ([[Red algae|Rhodophyta]]) and green (Chlorophyta) algae. Relatively little is known about the evolutionary history of sponge photosymbiois due to a lack of [[Genomic library|genomic]] data<ref name=":3">{{Cite journal |last=Melo Clavijo |first=Jenny |last2=Donath |first2=Alexander |last3=Serôdio |first3=João |last4=Christa |first4=Gregor |date=2018-11 |title=Polymorphic adaptations in metazoans to establish and maintain photosymbioses |url=https://onlinelibrary.wiley.com/doi/10.1111/brv.12430 |journal=Biological Reviews |language=en |volume=93 |issue=4 |pages=2006–2020 |doi=10.1111/brv.12430 |issn=1464-7931}}</ref>. However, it has been shown that photosymbiotes are acquired [[Vertical transmission|vertically]] (transmission from parent to offspring) and/or [[Horizontal transmission|horizontally]] (acquired from the environment)<ref>{{Cite journal |last=de Oliveira |first=Bruno Francesco Rodrigues |last2=Freitas‐Silva |first2=Jéssyca |last3=Sánchez‐Robinet |first3=Claudia |last4=Laport |first4=Marinella Silva |date=2020-12 |title=Transmission of the sponge microbiome: moving towards a unified model |url=https://sfamjournals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.12896 |journal=Environmental Microbiology Reports |language=en |volume=12 |issue=6 |pages=619–638 |doi=10.1111/1758-2229.12896 |issn=1758-2229}}</ref>. Photosymbiotes can supply up to half of the host sponge’s respiratory demands and can support sponges during times of nutrient stress<ref>{{Cite journal |last=Hudspith |first=Meggie |last2=de Goeij |first2=Jasper M |last3=Streekstra |first3=Mischa |last4=Kornder |first4=Niklas A |last5=Bougoure |first5=Jeremy |last6=Guagliardo |first6=Paul |last7=Campana |first7=Sara |last8=van der Wel |first8=Nicole N |last9=Muyzer |first9=Gerard |last10=Rix |first10=Laura |date=2022-06-02 |title=Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge |url=https://doi.org/10.1038/s41396-022-01254-3 |journal=The ISME Journal |volume=16 |issue=9 |pages=2076–2086 |doi=10.1038/s41396-022-01254-3 |issn=1751-7362 |pmc=PMC9381825 |pmid=35654830}}</ref>.

Members of certain classes in phylum [[Cnidaria]] are known for photosymbiotic partnerships. Members of corals (Class [[Anthozoa]]) in the orders [[Hexacorallia]] and [[Octocorallia]] form well-characterized partnerships with the dinoflagellate genus [[Symbiodinium]]. Some jellyfish (class [[Scyphozoa]]) in the genus [[Cassiopea]] (upside-down jellyfish) also possess Symbiodinium. Certain species in the genus [[Hydra (genus)|Hydra]] (class [[Hydrozoa]]) also harbor green algae and form a stable photosymbiosis<ref name=":3" />. The evolution of photosymbiosis in corals was likely critical for the global establishment of [[Coral reef|coral reefs]]<ref>{{Cite journal |last=Muscatine |first=Leonard |last2=Goiran |first2=Claire |last3=Land |first3=Lynton |last4=Jaubert |first4=Jean |last5=Cuif |first5=Jean-Pierre |last6=Allemand |first6=Denis |date=2005-02 |title=Stable isotopes (δ 13 C and δ 15 N) of organic matrix from coral skeleton |url=https://pnas.org/doi/full/10.1073/pnas.0408921102 |journal=Proceedings of the National Academy of Sciences |language=en |volume=102 |issue=5 |pages=1525–1530 |doi=10.1073/pnas.0408921102 |issn=0027-8424 |pmc=PMC547863 |pmid=15671164}}</ref>. Corals are likewise adapted to eject damaged photosymbionts that generate high levels of toxic reactive oxygen species, a process known as [[Coral bleaching|bleaching]]<ref>{{Cite journal |last=Weis |first=Virginia M. |date=2008-10-01 |title=Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis |url=https://journals.biologists.com/jeb/article/211/19/3059/18247/Cellular-mechanisms-of-Cnidarian-bleaching-stress |journal=Journal of Experimental Biology |language=en |volume=211 |issue=19 |pages=3059–3066 |doi=10.1242/jeb.009597 |issn=1477-9145}}</ref>. The identity of the Symbiodinium photosymbiont can change in corals, although this depends largely on the mode of transmission: some species vertically transmit their algal partners through their eggs<ref>{{Cite journal |last=Padilla-Gamiño |first=Jacqueline L. |last2=Pochon |first2=Xavier |last3=Bird |first3=Christopher |last4=Concepcion |first4=Gregory T. |last5=Gates |first5=Ruth D. |date=2012-06-06 |title=From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata |url=https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038440 |journal=PLOS ONE |language=en |volume=7 |issue=6 |pages=e38440 |doi=10.1371/journal.pone.0038440 |issn=1932-6203 |pmc=PMC3368852 |pmid=22701642}}</ref>, while other species acquire environmental dinoflagellates as newly-released eggs<ref>{{Cite journal |last=van Oppen |first=Madeleine J. H. |last2=Medina |first2=Mónica |date=2020-09-28 |title=Coral evolutionary responses to microbial symbioses |url=https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0591 |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |language=en |volume=375 |issue=1808 |pages=20190591 |doi=10.1098/rstb.2019.0591 |issn=0962-8436 |pmc=PMC7435167 |pmid=32772672}}</ref>. Since algae are not preserved in the coral fossil record, understanding the evolutionary history of the symbiosis is difficult<ref>{{Citation |last=Stanley |first=G. D. |title=The Evolution of the Coral–Algal Symbiosis |date=2009 |work=Coral Bleaching |volume=205 |pages=7–19 |editor-last=van Oppen |editor-first=Madeleine J. H. |url=http://link.springer.com/10.1007/978-3-540-69775-6_2 |access-date=2024-05-08 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |language=en |doi=10.1007/978-3-540-69775-6_2 |isbn=978-3-540-69774-9 |last2=van de Schootbrugge |first2=B. |editor2-last=Lough |editor2-first=Janice M.}}</ref>.  


==References==
==References==

Revision as of 15:37, 8 May 2024

Photosymbiosis is a type of symbiosis where one of the organisms is capable of photosynthesis.[1]

Examples of photosymbiosis
Lichen Variospora thallincola growing on rock
Southern giant clam Tridacna derasa
Upside-down jellyfish Cassiopea xamachana

Examples of photosymbiotic relationships include those in lichens, plankton, ciliates, and many marine organisms including corals, fire corals, giant clams, and jellyfish.[2][3][4]

Photosymbiosis is important in the development, maintenance, and evolution of terrestrial and aquatic ecosystems, for example in biological soil crusts, soil formation, supporting highly diverse microbial populations in soil and water, and coral reef growth and maintenance.[5][6]

Plagiomnium affine moss cells with visible chloroplasts—a type of plastid.

When one organism lives within another symbiotically it’s called endosymbiosis. Photosymbiotic relationships where microalgae and/or cyanobacteria live within a heterotrophic host organism, are believed to have led to eukaryotes acquiring photosynthesis and to the evolution of plants.[7][8]

Occurrence in Nature

Lichens represent an association between one or more fungal mycobionts and one or more photosynthetic algal or cyanobacterial photobionts. The mycobiont provides protection from predation and desiccation, while the photobiont provides energy in the form of fixed carbon. Cyanobacterial partners are also capable of fixing nitrogen for the fungal partner[9]. Recent work suggests that non-photosynthetic bacterial microbiomes associated with lichens may also have functional significance to lichens (Grube et al. 2015). Most mycobiont partners derive from the ascomycetes, and the largest class of lichenized fungi is Lecanoromycetes[10]. The vast majority of lichens derive photobionts from Chlorophyta (green algae)[9]. The co-evolutionary dynamics between mycobionts and photobionts are still unclear, as many photobionts are capable of free-living, and many lichenized fungi display traits adaptive to lichenization such as the capacity to withstand higher levels of reactive oxygen species (ROS), the conversion of sugars to polypols that help withstand dedication, and the downregulation of fungal virulence. However, it is still unclear whether these are derived from adaptive or preadaptive traits[9]. Currently described photobiont species number about 100, far less than the 19,000 described species of fungal mycobionts, and factors such as geography can predominate over mycobiont preference[11][12]. Phylogenetic analyses in lichenized fungi have suggested that, throughout evolutionary history, there has been repeated loss of photosymbionts, switching of photosymbionts, and independent lichenization events in previously unrelated fungal taxa[10][13]. Loss of lichenization has likely led to the coexistence of non-lichenized fungi and lichenized fungi in lichens[13].

Sponges (phylum Porifera) have a large diversity of photosymbiote associations. Photosymbiosis is found in four classes of Porifera (Demospongiae, Hexactinellida, Homoscleromorpha, and Calcarea), and known photosynthetic partners are cyanobacteria, chloroflexi, dinoflagellates, and red (Rhodophyta) and green (Chlorophyta) algae. Relatively little is known about the evolutionary history of sponge photosymbiois due to a lack of genomic data[14]. However, it has been shown that photosymbiotes are acquired vertically (transmission from parent to offspring) and/or horizontally (acquired from the environment)[15]. Photosymbiotes can supply up to half of the host sponge’s respiratory demands and can support sponges during times of nutrient stress[16].

Members of certain classes in phylum Cnidaria are known for photosymbiotic partnerships. Members of corals (Class Anthozoa) in the orders Hexacorallia and Octocorallia form well-characterized partnerships with the dinoflagellate genus Symbiodinium. Some jellyfish (class Scyphozoa) in the genus Cassiopea (upside-down jellyfish) also possess Symbiodinium. Certain species in the genus Hydra (class Hydrozoa) also harbor green algae and form a stable photosymbiosis[14]. The evolution of photosymbiosis in corals was likely critical for the global establishment of coral reefs[17]. Corals are likewise adapted to eject damaged photosymbionts that generate high levels of toxic reactive oxygen species, a process known as bleaching[18]. The identity of the Symbiodinium photosymbiont can change in corals, although this depends largely on the mode of transmission: some species vertically transmit their algal partners through their eggs[19], while other species acquire environmental dinoflagellates as newly-released eggs[20]. Since algae are not preserved in the coral fossil record, understanding the evolutionary history of the symbiosis is difficult[21].  

References

  1. ^ "photosymbiosis". Oxford Reference.
  2. ^ Gault J, Bentlage B, Huang D, Kerr A (2021). "Lineage-specific variation in the evolutionary stability of coral photosymbiosis". Science Advances. 7 (39): eabh4243. Bibcode:2021SciA....7.4243G. doi:10.1126/sciadv.abh4243. PMC 8457658. PMID 34550731.
  3. ^ Decelle, Johan (2013). "New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?". Communicative & Integrative Biology. 6 (4): e24560. doi:10.4161/cib.24560. PMC 3742057. PMID 23986805.
  4. ^ Enrique-Navarro A, Huertas E, Flander-Putrle V, Bartual A, Navarro G, Ruiz J, Malej A, Prieto L. "Living Inside a Jellyfish: The Symbiosis Case Study of Host-Specialized Dinoflagellates, "Zooxanthellae", and the Scyphozoan Cotylorhiza tuberculata". Retrieved 2023-06-18.
  5. ^ Gault J, Bentlage B, Huang D, Kerr A (2021). "Lineage-specific variation in the evolutionary stability of coral photosymbiosis". Science Advances. 7 (39): eabh4243. Bibcode:2021SciA....7.4243G. doi:10.1126/sciadv.abh4243. PMC 8457658. PMID 34550731.
  6. ^ Stanley Jr G, Lipps J (2011). "Photosymbiosis: The Driving Force for Reef Success and Failure". The Paleontological Society Papers. 17: 33–59. doi:10.1017/S1089332600002436. Retrieved 2023-06-18.
  7. ^ Decelle, Johan (2013). "New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?". Communicative & Integrative Biology. 6 (4): e24560. doi:10.4161/cib.24560. PMC 3742057. PMID 23986805.
  8. ^ Basic Biology (18 March 2016). "Bacteria".
  9. ^ a b c Spribille, Toby; Resl, Philipp; Stanton, Daniel E.; Tagirdzhanova, Gulnara (2022-06). "Evolutionary biology of lichen symbioses". New Phytologist. 234 (5): 1566–1582. doi:10.1111/nph.18048. ISSN 0028-646X. {{cite journal}}: Check date values in: |date= (help)
  10. ^ a b Miadlikowska, Jolanta; Kauff, Frank; Högnabba, Filip; Oliver, Jeffrey C.; Molnár, Katalin; Fraker, Emily; Gaya, Ester; Hafellner, Josef; Hofstetter, Valérie; Gueidan, Cécile; Otálora, Mónica A.G.; Hodkinson, Brendan; Kukwa, Martin; Lücking, Robert; Björk, Curtis (2014-10). "A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families". Molecular Phylogenetics and Evolution. 79: 132–168. doi:10.1016/j.ympev.2014.04.003. PMC 4185256. PMID 24747130. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  11. ^ Yahr, Rebecca; Vilgalys, Rytas; DePriest, Paula T. (2006-09). "Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis". New Phytologist. 171 (4): 847–860. doi:10.1111/j.1469-8137.2006.01792.x. ISSN 0028-646X. {{cite journal}}: Check date values in: |date= (help)
  12. ^ Sanders, William B.; Masumoto, Hiroshi (2021-09). "Lichen algae: the photosynthetic partners in lichen symbioses". The Lichenologist. 53 (5): 347–393. doi:10.1017/S0024282921000335. ISSN 0024-2829. {{cite journal}}: Check date values in: |date= (help)
  13. ^ a b Nelsen, Matthew P.; Lücking, Robert; Boyce, C. Kevin; Lumbsch, H. Thorsten; Ree, Richard H. (2020-09). "The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens". Proceedings of the National Academy of Sciences. 117 (35): 21495–21503. doi:10.1073/pnas.2001913117. ISSN 0027-8424. PMC 7474681. PMID 32796103. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  14. ^ a b Melo Clavijo, Jenny; Donath, Alexander; Serôdio, João; Christa, Gregor (2018-11). "Polymorphic adaptations in metazoans to establish and maintain photosymbioses". Biological Reviews. 93 (4): 2006–2020. doi:10.1111/brv.12430. ISSN 1464-7931. {{cite journal}}: Check date values in: |date= (help)
  15. ^ de Oliveira, Bruno Francesco Rodrigues; Freitas‐Silva, Jéssyca; Sánchez‐Robinet, Claudia; Laport, Marinella Silva (2020-12). "Transmission of the sponge microbiome: moving towards a unified model". Environmental Microbiology Reports. 12 (6): 619–638. doi:10.1111/1758-2229.12896. ISSN 1758-2229. {{cite journal}}: Check date values in: |date= (help)
  16. ^ Hudspith, Meggie; de Goeij, Jasper M; Streekstra, Mischa; Kornder, Niklas A; Bougoure, Jeremy; Guagliardo, Paul; Campana, Sara; van der Wel, Nicole N; Muyzer, Gerard; Rix, Laura (2022-06-02). "Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge". The ISME Journal. 16 (9): 2076–2086. doi:10.1038/s41396-022-01254-3. ISSN 1751-7362. PMC 9381825. PMID 35654830.{{cite journal}}: CS1 maint: PMC format (link)
  17. ^ Muscatine, Leonard; Goiran, Claire; Land, Lynton; Jaubert, Jean; Cuif, Jean-Pierre; Allemand, Denis (2005-02). "Stable isotopes (δ 13 C and δ 15 N) of organic matrix from coral skeleton". Proceedings of the National Academy of Sciences. 102 (5): 1525–1530. doi:10.1073/pnas.0408921102. ISSN 0027-8424. PMC 547863. PMID 15671164. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  18. ^ Weis, Virginia M. (2008-10-01). "Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis". Journal of Experimental Biology. 211 (19): 3059–3066. doi:10.1242/jeb.009597. ISSN 1477-9145.
  19. ^ Padilla-Gamiño, Jacqueline L.; Pochon, Xavier; Bird, Christopher; Concepcion, Gregory T.; Gates, Ruth D. (2012-06-06). "From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata". PLOS ONE. 7 (6): e38440. doi:10.1371/journal.pone.0038440. ISSN 1932-6203. PMC 3368852. PMID 22701642.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  20. ^ van Oppen, Madeleine J. H.; Medina, Mónica (2020-09-28). "Coral evolutionary responses to microbial symbioses". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1808): 20190591. doi:10.1098/rstb.2019.0591. ISSN 0962-8436. PMC 7435167. PMID 32772672.{{cite journal}}: CS1 maint: PMC format (link)
  21. ^ Stanley, G. D.; van de Schootbrugge, B. (2009), van Oppen, Madeleine J. H.; Lough, Janice M. (eds.), "The Evolution of the Coral–Algal Symbiosis", Coral Bleaching, vol. 205, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 7–19, doi:10.1007/978-3-540-69775-6_2, ISBN 978-3-540-69774-9, retrieved 2024-05-08