Jump to content

Heteromer: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 5: Line 5:


==Pharmacology==
==Pharmacology==
* [[Ligand-gated ion channel]]s such as the [[nicotinic acetylcholine receptor]] and [[GABAA receptor|GABA<sub>A</sub> receptor]] are composed of five subunits arranged around a central pore that opens to allow ions to pass through. There are a large number of different subunits available, which can come together in a wide variety of combinations to form different subtypes of the ion channel.<ref name="pmid17597586">{{cite journal | author = Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M | title = Heterogeneity and complexity of native brain nicotinic receptors | journal = Biochemical Pharmacology | volume = 74 | issue = 8 | pages = 1102–11 | year = 2007 | month = October | pmid = 17597586 | doi = 10.1016/j.bcp.2007.05.023 | url = | issn = }}</ref> Sometimes the channel can be made from only one type of subunit, such as the [[Alpha-7 nicotinic receptor|α7 nicotinic receptor]] which is made up from five [[CHRNA7|α7]] subunits, and so is a [http://en.wiktionary.org/wiki/homomer homomer] rather than a heteromer, but more commonly several different types of subunit will come together to form a heteromeric complex (e.g. the [[Alpha-4 beta-2 nicotinic receptor|α4β2 nicotinic receptor]] which is made up from two [[CHRNA4|α4]] subunits and three [[CHRNB2|β2]] subunits). Because the different ion channel subtypes are expressed to different extents in different tissues, this allows selective modulation of ion transport and means that a single [[neurotransmitter]] can produce varying effects depending on where in the body it is released.<ref name="pmid12769611">{{cite journal | author = Graham AJ, Martin-Ruiz CM, Teaktong T, Ray MA, Court JA | title = Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders | journal = Current Drug Targets. CNS and Neurological Disorders | volume = 1 | issue = 4 | pages = 387–97 | year = 2002 | month = August | pmid = 12769611 | doi = | url = | issn = }}</ref><ref name="pmid17557501">{{cite journal | author = Nutt D | title = GABAA receptors: subtypes, regional distribution, and function | journal = Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine | volume = 2 | issue = 2 | pages = S7–11 | year = 2006 | month = April | pmid = 17557501 | doi = | url = | issn = }}</ref><ref name="pmid17950542">{{cite journal | author = Heldt SA, Ressler KJ | title = Forebrain and midbrain distribution of major benzodiazepine-sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ hybridization | journal = Neuroscience | volume = 150 | issue = 2 | pages = 370–85 | year = 2007 | month = December | pmid = 17950542 | pmc = 2292345 | doi = 10.1016/j.neuroscience.2007.09.008 | url = | issn = }}</ref>
* [[Ligand-gated ion channel]]s such as the [[nicotinic acetylcholine receptor]] and [[GABAA receptor|GABA<sub>A</sub> receptor]] are composed of five subunits arranged around a central pore that opens to allow ions to pass through. There are a large number of different subunits available, which can come together in a wide variety of combinations to form different subtypes of the ion channel.<ref name="pmid17597586">{{cite journal | author = Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M | title = Heterogeneity and complexity of native brain nicotinic receptors | journal = Biochemical Pharmacology | volume = 74 | issue = 8 | pages = 1102–11 | year = 2007 | month = October | pmid = 17597586 | doi = 10.1016/j.bcp.2007.05.023 | url = | issn = }}</ref><ref name="pmid18723036">{{cite journal | author = Millar NS, Gotti C | title = Diversity of vertebrate nicotinic acetylcholine receptors | journal = Neuropharmacology | volume = 56 | issue = 1 | pages = 237–46 | year = 2009 | month = January | pmid = 18723036 | doi = 10.1016/j.neuropharm.2008.07.041 | url = | issn = }}</ref><ref name="pmid19184647">{{cite journal | author = Collins AC, Salminen O, Marks MJ, Whiteaker P, Grady SR | title = The road to discovery of neuronal nicotinic cholinergic receptor subtypes | journal = Handbook of Experimental Pharmacology | volume = | issue = 192 | pages = 85–112 | year = 2009 | pmid = 19184647 | doi = 10.1007/978-3-540-69248-5_4 | url = | issn = }}</ref> Sometimes the channel can be made from only one type of subunit, such as the [[Alpha-7 nicotinic receptor|α7 nicotinic receptor]] which is made up from five [[CHRNA7|α7]] subunits, and so is a [http://en.wiktionary.org/wiki/homomer homomer] rather than a heteromer, but more commonly several different types of subunit will come together to form a heteromeric complex (e.g. the [[Alpha-4 beta-2 nicotinic receptor|α4β2 nicotinic receptor]] which is made up from two [[CHRNA4|α4]] subunits and three [[CHRNB2|β2]] subunits). Because the different ion channel subtypes are expressed to different extents in different tissues, this allows selective modulation of ion transport and means that a single [[neurotransmitter]] can produce varying effects depending on where in the body it is released.<ref name="pmid12769611">{{cite journal | author = Graham AJ, Martin-Ruiz CM, Teaktong T, Ray MA, Court JA | title = Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders | journal = Current Drug Targets. CNS and Neurological Disorders | volume = 1 | issue = 4 | pages = 387–97 | year = 2002 | month = August | pmid = 12769611 | doi = | url = | issn = }}</ref><ref name="pmid17557501">{{cite journal | author = Nutt D | title = GABAA receptors: subtypes, regional distribution, and function | journal = Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine | volume = 2 | issue = 2 | pages = S7–11 | year = 2006 | month = April | pmid = 17557501 | doi = | url = | issn = }}</ref><ref name="pmid17950542">{{cite journal | author = Heldt SA, Ressler KJ | title = Forebrain and midbrain distribution of major benzodiazepine-sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ hybridization | journal = Neuroscience | volume = 150 | issue = 2 | pages = 370–85 | year = 2007 | month = December | pmid = 17950542 | pmc = 2292345 | doi = 10.1016/j.neuroscience.2007.09.008 | url = | issn = }}</ref>


* [[G protein-coupled receptor]]s are composed of seven membrane-spanning alpha-helical segments, which are usually linked together into a single folded chain to form the receptor complex. However research has demonstrated that a number of GPCRs are also capable of forming heteromers from a combination of two or more individual GPCR subunits under some circumstances, especially where several different GPCRs are densely expressed in the same neuron. Such heteromers may be between receptors from the same family (e.g. adenosine [[Adenosine A1 receptor|A<sub>1</sub>]]/[[Adenosine A2A receptor|A<sub>2A</sub>]] heteromers<ref name="pmid16481441">{{cite journal | author = Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R | title = Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers | journal = The Journal of Neuroscience : the Official Journal of the Society for Neuroscience | volume = 26 | issue = 7 | pages = 2080–7 | year = 2006 | month = February | pmid = 16481441 | doi = 10.1523/JNEUROSCI.3574-05.2006 | url = | issn = }}</ref><ref name="pmid17981720">{{cite journal | author = Ferre S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR | title = Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain | journal = Frontiers in Bioscience : a Journal and Virtual Library | volume = 13 | issue = | pages = 2391–9 | year = 2008 | pmid = 17981720 | doi = | url = http://www.bioscience.org/2008/v13/af/2852/fulltext.htm | issn = }}</ref> and dopamine [[dopamine receptor D1|D<sub>1</sub>]]/[[dopamine receptor D2|D<sub>2</sub>]]<ref name="pmid17194762">{{cite journal | author = Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O'Dowd BF, George SR | title = D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 104 | issue = 2 | pages = 654–9 | year = 2007 | month = January | pmid = 17194762 | pmc = 1766439 | doi = 10.1073/pnas.0604049104 | url = | issn = }}</ref> and [[dopamine receptor D1|D<sub>1</sub>]]/[[dopamine receptor D3|D<sub>3</sub>]] heteromers<ref name="pmid18644790">{{cite journal | author = Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R | title = Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum | journal = The Journal of Biological Chemistry | volume = 283 | issue = 38 | pages = 26016–25 | year = 2008 | month = September | pmid = 18644790 | doi = 10.1074/jbc.M710349200 | url = | issn = }}</ref>) or between entirely unrelated receptors such as glutamate [[Metabotropic glutamate receptor 5|mGluR<sub>5</sub>]] / adenosine A<sub>2A</sub> heteromers,<ref name="pmid18246094">{{cite journal | author = Zezula J, Freissmuth M | title = The A(2A)-adenosine receptor: a GPCR with unique features? | journal = British Journal of Pharmacology | volume = 153 Suppl 1 | issue = | pages = S184–90 | year = 2008 | month = March | pmid = 18246094 | pmc = 2268059 | doi = 10.1038/sj.bjp.0707674 | url = | issn = }}</ref> cannabinoid [[Cannabinoid receptor 1|CB<sub>1</sub>]] / dopamine D<sub>2</sub> heteromers,<ref name="pmid18262573">{{cite journal | author = Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Müller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K | title = Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis | journal = Neuropharmacology | volume = 54 | issue = 5 | pages = 815–23 | year = 2008 | month = April | pmid = 18262573 | doi = 10.1016/j.neuropharm.2007.12.011 | url = | issn = }}</ref> and even CB<sub>1</sub>/A<sub>2A</sub>/D<sub>2</sub> heterotrimers where three different receptors have come together to form a heteromer.<ref name="pmid18691604">{{cite journal | author = Ferré S, Goldberg SR, Lluis C, Franco R | title = Looking for the role of cannabinoid receptor heteromers in striatal function | journal = Neuropharmacology | volume = 56 Suppl 1 | issue = | pages = 226–34 | year = 2009 | pmid = 18691604 | doi = 10.1016/j.neuropharm.2008.06.076 | url = | issn = }}</ref> The ligand binding properties and intracellular trafficking pathways of GPCR heteromers usually show elements from both parent receptors, but may also produce quite unexpected pharmacological properties, making such heteromers an important focus of current research.<ref name="pmid18037920">{{cite journal | author = Franco R, Casadó V, Cortés A, Mallol J, Ciruela F, Ferré S, Lluis C, Canela EI | title = G-protein-coupled receptor heteromers: function and ligand pharmacology | journal = British Journal of Pharmacology | volume = 153 Suppl 1 | issue = | pages = S90–8 | year = 2008 | month = March | pmid = 18037920 | pmc = 2268068 | doi = 10.1038/sj.bjp.0707571 | url = | issn = }}</ref><ref name="pmid18222544">{{cite journal | author = Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts DC, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati LF | title = Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology | journal = Brain Research Reviews | volume = 58 | issue = 2 | pages = 415–52 | year = 2008 | month = August | pmid = 18222544 | doi = 10.1016/j.brainresrev.2007.11.007 | url = | issn = }}</ref><ref name="pmid18620000">{{cite journal | author = Franco R, Casadó V, Cortés A, Pérez-Capote K, Mallol J, Canela E, Ferré S, Lluis C | title = Novel pharmacological targets based on receptor heteromers | journal = Brain Research Reviews | volume = 58 | issue = 2 | pages = 475–82 | year = 2008 | month = August | pmid = 18620000 | doi = 10.1016/j.brainresrev.2008.06.002 | url = | issn = }}</ref><ref name="pmid19156349">{{cite journal | author = Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, Tanganelli S, Agnati LF | title = Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia | journal = Journal of Neural Transmission (Vienna, Austria : 1996) | volume = | issue = | pages = | year = 2009 | month = January | pmid = 19156349 | doi = 10.1007/s00702-008-0174-9 | url = | issn = }}</ref><ref name="pmid19219011">{{cite journal | author = Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R | title = Building a new conceptual framework for receptor heteromers | journal = Nature Chemical Biology | volume = 5 | issue = 3 | pages = 131–4 | year = 2009 | month = March | pmid = 19219011 | doi = 10.1038/nchembio0309-131 | url = | issn = }}</ref>
* [[G protein-coupled receptor]]s are composed of seven membrane-spanning alpha-helical segments, which are usually linked together into a single folded chain to form the receptor complex. However research has demonstrated that a number of GPCRs are also capable of forming heteromers from a combination of two or more individual GPCR subunits under some circumstances, especially where several different GPCRs are densely expressed in the same neuron. Such heteromers may be between receptors from the same family (e.g. adenosine [[Adenosine A1 receptor|A<sub>1</sub>]]/[[Adenosine A2A receptor|A<sub>2A</sub>]] heteromers<ref name="pmid16481441">{{cite journal | author = Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R | title = Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers | journal = The Journal of Neuroscience : the Official Journal of the Society for Neuroscience | volume = 26 | issue = 7 | pages = 2080–7 | year = 2006 | month = February | pmid = 16481441 | doi = 10.1523/JNEUROSCI.3574-05.2006 | url = | issn = }}</ref><ref name="pmid17981720">{{cite journal | author = Ferre S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR | title = Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain | journal = Frontiers in Bioscience : a Journal and Virtual Library | volume = 13 | issue = | pages = 2391–9 | year = 2008 | pmid = 17981720 | doi = | url = http://www.bioscience.org/2008/v13/af/2852/fulltext.htm | issn = }}</ref> and dopamine [[dopamine receptor D1|D<sub>1</sub>]]/[[dopamine receptor D2|D<sub>2</sub>]]<ref name="pmid17194762">{{cite journal | author = Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O'Dowd BF, George SR | title = D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 104 | issue = 2 | pages = 654–9 | year = 2007 | month = January | pmid = 17194762 | pmc = 1766439 | doi = 10.1073/pnas.0604049104 | url = | issn = }}</ref> and [[dopamine receptor D1|D<sub>1</sub>]]/[[dopamine receptor D3|D<sub>3</sub>]] heteromers<ref name="pmid18644790">{{cite journal | author = Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R | title = Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum | journal = The Journal of Biological Chemistry | volume = 283 | issue = 38 | pages = 26016–25 | year = 2008 | month = September | pmid = 18644790 | doi = 10.1074/jbc.M710349200 | url = | issn = }}</ref>) or between entirely unrelated receptors such as glutamate [[Metabotropic glutamate receptor 5|mGluR<sub>5</sub>]] / adenosine A<sub>2A</sub> heteromers,<ref name="pmid18246094">{{cite journal | author = Zezula J, Freissmuth M | title = The A(2A)-adenosine receptor: a GPCR with unique features? | journal = British Journal of Pharmacology | volume = 153 Suppl 1 | issue = | pages = S184–90 | year = 2008 | month = March | pmid = 18246094 | pmc = 2268059 | doi = 10.1038/sj.bjp.0707674 | url = | issn = }}</ref> cannabinoid [[Cannabinoid receptor 1|CB<sub>1</sub>]] / dopamine D<sub>2</sub> heteromers,<ref name="pmid18262573">{{cite journal | author = Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Müller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K | title = Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis | journal = Neuropharmacology | volume = 54 | issue = 5 | pages = 815–23 | year = 2008 | month = April | pmid = 18262573 | doi = 10.1016/j.neuropharm.2007.12.011 | url = | issn = }}</ref> and even CB<sub>1</sub>/A<sub>2A</sub>/D<sub>2</sub> heterotrimers where three different receptors have come together to form a heteromer.<ref name="pmid18691604">{{cite journal | author = Ferré S, Goldberg SR, Lluis C, Franco R | title = Looking for the role of cannabinoid receptor heteromers in striatal function | journal = Neuropharmacology | volume = 56 Suppl 1 | issue = | pages = 226–34 | year = 2009 | pmid = 18691604 | doi = 10.1016/j.neuropharm.2008.06.076 | url = | issn = }}</ref> The ligand binding properties and intracellular trafficking pathways of GPCR heteromers usually show elements from both parent receptors, but may also produce quite unexpected pharmacological properties, making such heteromers an important focus of current research.<ref name="pmid18037920">{{cite journal | author = Franco R, Casadó V, Cortés A, Mallol J, Ciruela F, Ferré S, Lluis C, Canela EI | title = G-protein-coupled receptor heteromers: function and ligand pharmacology | journal = British Journal of Pharmacology | volume = 153 Suppl 1 | issue = | pages = S90–8 | year = 2008 | month = March | pmid = 18037920 | pmc = 2268068 | doi = 10.1038/sj.bjp.0707571 | url = | issn = }}</ref><ref name="pmid18222544">{{cite journal | author = Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts DC, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati LF | title = Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology | journal = Brain Research Reviews | volume = 58 | issue = 2 | pages = 415–52 | year = 2008 | month = August | pmid = 18222544 | doi = 10.1016/j.brainresrev.2007.11.007 | url = | issn = }}</ref><ref name="pmid18620000">{{cite journal | author = Franco R, Casadó V, Cortés A, Pérez-Capote K, Mallol J, Canela E, Ferré S, Lluis C | title = Novel pharmacological targets based on receptor heteromers | journal = Brain Research Reviews | volume = 58 | issue = 2 | pages = 475–82 | year = 2008 | month = August | pmid = 18620000 | doi = 10.1016/j.brainresrev.2008.06.002 | url = | issn = }}</ref><ref name="pmid19156349">{{cite journal | author = Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, Tanganelli S, Agnati LF | title = Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia | journal = Journal of Neural Transmission (Vienna, Austria : 1996) | volume = | issue = | pages = | year = 2009 | month = January | pmid = 19156349 | doi = 10.1007/s00702-008-0174-9 | url = | issn = }}</ref><ref name="pmid19219011">{{cite journal | author = Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R | title = Building a new conceptual framework for receptor heteromers | journal = Nature Chemical Biology | volume = 5 | issue = 3 | pages = 131–4 | year = 2009 | month = March | pmid = 19219011 | doi = 10.1038/nchembio0309-131 | url = | issn = }}</ref>

Revision as of 07:41, 21 April 2009

A heteromer is something that consists of parts of different chemical composition. Examples are:

Biology

Pharmacology

  • Ligand-gated ion channels such as the nicotinic acetylcholine receptor and GABAA receptor are composed of five subunits arranged around a central pore that opens to allow ions to pass through. There are a large number of different subunits available, which can come together in a wide variety of combinations to form different subtypes of the ion channel.[2][3][4] Sometimes the channel can be made from only one type of subunit, such as the α7 nicotinic receptor which is made up from five α7 subunits, and so is a homomer rather than a heteromer, but more commonly several different types of subunit will come together to form a heteromeric complex (e.g. the α4β2 nicotinic receptor which is made up from two α4 subunits and three β2 subunits). Because the different ion channel subtypes are expressed to different extents in different tissues, this allows selective modulation of ion transport and means that a single neurotransmitter can produce varying effects depending on where in the body it is released.[5][6][7]
  • G protein-coupled receptors are composed of seven membrane-spanning alpha-helical segments, which are usually linked together into a single folded chain to form the receptor complex. However research has demonstrated that a number of GPCRs are also capable of forming heteromers from a combination of two or more individual GPCR subunits under some circumstances, especially where several different GPCRs are densely expressed in the same neuron. Such heteromers may be between receptors from the same family (e.g. adenosine A1/A2A heteromers[8][9] and dopamine D1/D2[10] and D1/D3 heteromers[11]) or between entirely unrelated receptors such as glutamate mGluR5 / adenosine A2A heteromers,[12] cannabinoid CB1 / dopamine D2 heteromers,[13] and even CB1/A2A/D2 heterotrimers where three different receptors have come together to form a heteromer.[14] The ligand binding properties and intracellular trafficking pathways of GPCR heteromers usually show elements from both parent receptors, but may also produce quite unexpected pharmacological properties, making such heteromers an important focus of current research.[15][16][17][18][19]

References

  1. ^ Medical dictionary
  2. ^ Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M (2007). "Heterogeneity and complexity of native brain nicotinic receptors". Biochemical Pharmacology. 74 (8): 1102–11. doi:10.1016/j.bcp.2007.05.023. PMID 17597586. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  3. ^ Millar NS, Gotti C (2009). "Diversity of vertebrate nicotinic acetylcholine receptors". Neuropharmacology. 56 (1): 237–46. doi:10.1016/j.neuropharm.2008.07.041. PMID 18723036. {{cite journal}}: Unknown parameter |month= ignored (help)
  4. ^ Collins AC, Salminen O, Marks MJ, Whiteaker P, Grady SR (2009). "The road to discovery of neuronal nicotinic cholinergic receptor subtypes". Handbook of Experimental Pharmacology (192): 85–112. doi:10.1007/978-3-540-69248-5_4. PMID 19184647.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Graham AJ, Martin-Ruiz CM, Teaktong T, Ray MA, Court JA (2002). "Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders". Current Drug Targets. CNS and Neurological Disorders. 1 (4): 387–97. PMID 12769611. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  6. ^ Nutt D (2006). "GABAA receptors: subtypes, regional distribution, and function". Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine. 2 (2): S7–11. PMID 17557501. {{cite journal}}: Unknown parameter |month= ignored (help)
  7. ^ Heldt SA, Ressler KJ (2007). "Forebrain and midbrain distribution of major benzodiazepine-sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ hybridization". Neuroscience. 150 (2): 370–85. doi:10.1016/j.neuroscience.2007.09.008. PMC 2292345. PMID 17950542. {{cite journal}}: Unknown parameter |month= ignored (help)
  8. ^ Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006). "Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers". The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 26 (7): 2080–7. doi:10.1523/JNEUROSCI.3574-05.2006. PMID 16481441. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  9. ^ Ferre S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR (2008). "Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain". Frontiers in Bioscience : a Journal and Virtual Library. 13: 2391–9. PMID 17981720.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O'Dowd BF, George SR (2007). "D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum". Proceedings of the National Academy of Sciences of the United States of America. 104 (2): 654–9. doi:10.1073/pnas.0604049104. PMC 1766439. PMID 17194762. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008). "Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum". The Journal of Biological Chemistry. 283 (38): 26016–25. doi:10.1074/jbc.M710349200. PMID 18644790. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  12. ^ Zezula J, Freissmuth M (2008). "The A(2A)-adenosine receptor: a GPCR with unique features?". British Journal of Pharmacology. 153 Suppl 1: S184–90. doi:10.1038/sj.bjp.0707674. PMC 2268059. PMID 18246094. {{cite journal}}: Unknown parameter |month= ignored (help)
  13. ^ Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Müller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K (2008). "Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis". Neuropharmacology. 54 (5): 815–23. doi:10.1016/j.neuropharm.2007.12.011. PMID 18262573. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  14. ^ Ferré S, Goldberg SR, Lluis C, Franco R (2009). "Looking for the role of cannabinoid receptor heteromers in striatal function". Neuropharmacology. 56 Suppl 1: 226–34. doi:10.1016/j.neuropharm.2008.06.076. PMID 18691604.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Franco R, Casadó V, Cortés A, Mallol J, Ciruela F, Ferré S, Lluis C, Canela EI (2008). "G-protein-coupled receptor heteromers: function and ligand pharmacology". British Journal of Pharmacology. 153 Suppl 1: S90–8. doi:10.1038/sj.bjp.0707571. PMC 2268068. PMID 18037920. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  16. ^ Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts DC, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati LF (2008). "Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology". Brain Research Reviews. 58 (2): 415–52. doi:10.1016/j.brainresrev.2007.11.007. PMID 18222544. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  17. ^ Franco R, Casadó V, Cortés A, Pérez-Capote K, Mallol J, Canela E, Ferré S, Lluis C (2008). "Novel pharmacological targets based on receptor heteromers". Brain Research Reviews. 58 (2): 475–82. doi:10.1016/j.brainresrev.2008.06.002. PMID 18620000. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  18. ^ Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, Tanganelli S, Agnati LF (2009). "Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia". Journal of Neural Transmission (Vienna, Austria : 1996). doi:10.1007/s00702-008-0174-9. PMID 19156349. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  19. ^ Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R (2009). "Building a new conceptual framework for receptor heteromers". Nature Chemical Biology. 5 (3): 131–4. doi:10.1038/nchembio0309-131. PMID 19219011. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)