List of hyperaccumulators: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m add link to new species page
m →Cite journal with Wikipedia template filling, tweak cites, partial
Line 16: Line 16:
| [[Aluminium|Al]] - [[Aluminium]] || xxx || ''[[Hydrangea]]'' spp. || [[Hydrangea]] (a.k.a. Hortensia) || xxx || xxx || xxx
| [[Aluminium|Al]] - [[Aluminium]] || xxx || ''[[Hydrangea]]'' spp. || [[Hydrangea]] (a.k.a. Hortensia) || xxx || xxx || xxx
|-
|-
| [[Aluminium|Al]] - [[Aluminium]] || [[Aluminium|Al]] concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.<ref name = watan>[http://www.springerlink.com/content/t7080538256p0303/ Distribution and chemical speciation of aluminum in the Al accumulator plant, ''[[Melastoma affine|Melastoma malabathricum]]'' L.] By Toshihiro Watanabe, Mitsuru Osaki, Teruhiko Yoshihara and Toshiaki Tadano. In journal “Plant and Soil”. Ed. Springer Netherlands, Volume 201, Number 2 / April, 1998. pp. 165-173. ISSN 0032-079X (Print) 1573-5036 (Online). DOI 10.1023/A:1004341415878.</ref> || ''[[Melastoma affine|Melastoma malabathricum]]'' L. || Blue Tongue, or Native Lassiandra || [[phosphate|P]] competes with [[aluminium]] and reduces uptake.<ref name = edis>[http://edis.ifas.ufl.edu/EP177 Warm Climate Production Guidelines for Japanese Hydrangeas.] By Rick Shoellhorn and Alexis A. Richardson. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 5, 2005.</ref> || xxx
| [[Aluminium|Al]] - [[Aluminium]] || [[Aluminium|Al]] concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.<ref name = watan>{{cite journal |author=Toshihiro Watanabe, Mitsuru Osaki, Teruhiko Yoshihara and Toshiaki Tadano |title=Distribution and chemical speciation of aluminum in the Al accumulator plant, ''[[Melastoma affine|Melastoma malabathricum]]'' L. |journal=Plant and Soil |volume=201 |issue=2 |pages=165–173 |month=April |year=1998 |doi=10.1023/A:1004341415878 |url=http://www.springerlink.com/content/t7080538256p0303/}}</ref> || ''[[Melastoma affine|Melastoma malabathricum]]'' L. || Blue Tongue, or Native Lassiandra || [[phosphate|P]] competes with [[aluminium]] and reduces uptake.<ref name = edis>[http://edis.ifas.ufl.edu/EP177 Warm Climate Production Guidelines for Japanese Hydrangeas.] By Rick Shoellhorn and Alexis A. Richardson. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 5, 2005.</ref> || xxx
|-
|-
| [[Aluminium|Al]]-[[Aluminium]] || xxx || ''[[Solidago canadensis|Solidago hispida]]'' (''[[Solidago canadensis|Solidago canadensis'' L.]]) || Hairy Goldenrod || xxx || Origin Canada. || <ref name="GH"/><ref name="MS891"/>
| [[Aluminium|Al]]-[[Aluminium]] || xxx || ''[[Solidago canadensis|Solidago hispida]]'' (''[[Solidago canadensis|Solidago canadensis'' L.]]) || Hairy Goldenrod || xxx || Origin Canada. || <ref name="GH"/><ref name="MS891"/>
Line 24: Line 24:
| [[Silver|Ag]]-[[Silver]] || xxx || ''[[Brassica napus]]'' || [[Rapeseed]] plant || [[Chromium|Cr]], [[Mercury (element)|Hg]], [[Lead|Pb]], [[Selenium|Se]], [[Zinc|Zn]] || Phytoextraction || <ref name="Fiegl">[http://www.civil.northwestern.edu/ehe/html_kag/kimweb/MEOP/ ''A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils'']. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray</ref><ref name="MS19">''Phytoremediation.'' By McCutcheon & Schnoor. 2003, New Jersey, John Wiley & Sons pg 19.</ref>
| [[Silver|Ag]]-[[Silver]] || xxx || ''[[Brassica napus]]'' || [[Rapeseed]] plant || [[Chromium|Cr]], [[Mercury (element)|Hg]], [[Lead|Pb]], [[Selenium|Se]], [[Zinc|Zn]] || Phytoextraction || <ref name="Fiegl">[http://www.civil.northwestern.edu/ehe/html_kag/kimweb/MEOP/ ''A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils'']. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray</ref><ref name="MS19">''Phytoremediation.'' By McCutcheon & Schnoor. 2003, New Jersey, John Wiley & Sons pg 19.</ref>
|-
|-
| [[Silver|Ag]]-[[Silver]] || xxx || ''[[Salix]]'' spp. || [[Osier]] spp. || [[Chromium|Cr]], [[Mercury (element)|Hg]], [[Selenium|Se]], Petroleum hydrocarbures, Organic solvents, [[Methyl tert-butyl ether|MTBE]], [[Trichloroethylene|TCE]] and by-products;<ref name="MS19"/> [[Cadmium|Cd]], [[Lead|Pb]], [[Uranium|U]], Zn (''S. viminalix'');<ref name="Schmidt03"> [http://jeq.scijournals.org/cgi/content/abstract/32/6/1939 ''Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals''.] By Ulrich Schmidt. In J. Environ. Qual. 32:1939-1954 (2003)</ref> Potassium ferrocyanide (''S. babylonica'' L.)<ref name="Yu06"> [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16703454&dopt=Citation ''The potential for phytoremediation of iron cyanide complex by Willows.''] By X.Z. Yu, P.H. Zhou and Y.M. Yang. In Ecotoxicology 2006.</ref> || Phytoextraction. [[Perchlorate]] (wetland halophytes) || <ref name="MS19"/>
| [[Silver|Ag]]-[[Silver]] || xxx || ''[[Salix]]'' spp. || [[Osier]] spp. || [[Chromium|Cr]], [[Mercury (element)|Hg]], [[Selenium|Se]], Petroleum hydrocarbures, Organic solvents, [[Methyl tert-butyl ether|MTBE]], [[Trichloroethylene|TCE]] and by-products;<ref name="MS19"/> [[Cadmium|Cd]], [[Lead|Pb]], [[Uranium|U]], Zn (''S. viminalix'');<ref name="Schmidt03">{{cite journal |author=Ulrich Schmidt |title=Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals |journal=J. Environ. Qual. |volume=32 |issue=6 |pages=1939–54 |year=2003 |url=http://jeq.scijournals.org/cgi/content/abstract/32/6/1939}}</ref> Potassium ferrocyanide (''S. babylonica'' L.)<ref name="Yu06">{{cite journal |author=Yu XZ, Zhou PH, Yang YM |title=The potential for phytoremediation of iron cyanide complex by willows |journal=Ecotoxicology |volume=15 |issue=5 |pages=461–7 |year=2006 |month=July |pmid=16703454 |doi=10.1007/s10646-006-0081-5 }}</ref> || Phytoextraction. [[Perchlorate]] (wetland halophytes) || <ref name="MS19"/>
|-
|-
| [[Silver|Ag]]-[[Silver]] || xxx || ''[[Amanita]] strobiliformis'' || European Pine Cone Lepidella || [[Silver|Ag]](H) || Macrofungi, [[Basidiomycete]]. Known from Europe, prefers calcareous areas || <ref name = boro>Borovička J., Řanda Z., Jelínek E., Kotrba P., Dunn C.E. (2007): Hyperaccumulation of silver by ''Amanita strobiliformis'' and related species of the section ''Lepidella''. Mycological Research 111: 1339-1344.
| [[Silver|Ag]]-[[Silver]] || xxx || ''[[Amanita]] strobiliformis'' || European Pine Cone Lepidella || [[Silver|Ag]](H) || Macrofungi, [[Basidiomycete]]. Known from Europe, prefers calcareous areas || <ref name = boro>{{cite journal |author=Borovička J., Řanda Z., Jelínek E., Kotrba P., Dunn C.E. |title=Hyperaccumulation of silver by ''Amanita strobiliformis'' and related species of the section ''Lepidella'' |journal=Mycological Research |volume=111 |pages=1339–44 |year=2007 }}
</ref>
</ref>
|-
|-
| [[Silver|Ag]]-[[Silver]] || 10-1200 || ''[[Brassica juncea]]'' || Indian Mustard || [[Silver|Ag]](H) || Can form alloys of silver-gold-copper || <ref name = Haverkamp2007JNanopartRes>R.G. Haverkamp and A.T. Marshall and D. van Agterveld "Pick your Carats: Nanoparticles of Gold-Silver-Copper Alloy Produced In Vivo" J. Nanoparticle Res., 9, p697-700, (2007)</ref>
| [[Silver|Ag]]-[[Silver]] || 10-1200 || ''[[Brassica juncea]]'' || Indian Mustard || [[Silver|Ag]](H) || Can form alloys of silver-gold-copper || <ref name = Haverkamp2007JNanopartRes>{{cite journal |author=R.G. Haverkamp and A.T. Marshall and D. van Agterveld |title=Pick your Carats: Nanoparticles of Gold-Silver-Copper Alloy Produced In Vivo |journal=J. Nanoparticle Res. |volume=9 |issue= |pages=697–700 |year=2007 }}</ref>
|-
|-
| [[Arsenic|As]]-[[Arsenic]] || 100 || ''[[Agrostis capillaris]] L.'' || Common Bent Grass, Browntop. (= ''A. tenuris'') || [[Aluminium|Al]](A), [[Manganese|Mn]](A), [[Lead|Pb]](A), [[Zinc|Zn]](A) || xxx || <ref name="MS891"/>
| [[Arsenic|As]]-[[Arsenic]] || 100 || ''[[Agrostis capillaris]] L.'' || Common Bent Grass, Browntop. (= ''A. tenuris'') || [[Aluminium|Al]](A), [[Manganese|Mn]](A), [[Lead|Pb]](A), [[Zinc|Zn]](A) || xxx || <ref name="MS891"/>
Line 37: Line 37:
| [[Arsenic|As]]-[[Arsenic]] || 1000 || ''[[Agrostis]] tenerrima Trin.'' || Colonial bentgrass || xxx || 4 records of plants || <ref name="MS891"/><ref name="PP">Porter and Peterson 1975</ref>
| [[Arsenic|As]]-[[Arsenic]] || 1000 || ''[[Agrostis]] tenerrima Trin.'' || Colonial bentgrass || xxx || 4 records of plants || <ref name="MS891"/><ref name="PP">Porter and Peterson 1975</ref>
|-
|-
|[[Arsenic|As]]-[[Arsenic]] || 27,000 (fronds)<ref name="Wang02">[http://www.plantphysiol.org/cgi/content/full/130/3/1552?maxtoshow=&HITS=&hits=&RESULTFORMAT=1&andorexacttitle=and&fulltext=list+hyperaccumulators&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT ''Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation''.] By Junru Wang, Fang-Jie Zhao, Andrew A. Meharg, Andrea Raab, Joerg Feldmann and Steve P. McGrath. In Plant Physiol, November 2002, Vol. 130, pp. 1552-1561. 18 days' hydroponic experiment with varying concentrations of arsenate and [[phosphate|P]]. Within 8 h, 50% to 78% of the [[Arsenic|As]] taken up is distributed to the fronds, which take from 1.3 to 6.7 times more [[Arsenic|As]] than the roots do. No [[phosphate|P]] for 8 days increases the arsenate's maximum net influx by 2.5-fold; the plants then absorbs 10 times more arsenate than arsenite. If on the other hand the [[phosphate|P]] supply is increased, [[Arsenic|As]] uptake decreases - with a greater effect on the roots than on the shoots. More arsenate decreases the [[phosphate|P]] concentration in the roots, but not in the fronds. [[phosphate|P]] in the uptake solution markedly decreases arsenate uptake. The presence or absence of [[phosphate|P]] does not affect the uptake of arsenite, which translocates more easily than arsenate.</ref> || ''[[Pteris vittata]] L.'' || [[Pteris vittata|Ladder brake fern]] or [[Pteris vittata|Chinese brake fern]] || 26% of [[arsenic]] in the soil removed after 20 weeks' plantation, about 90% [[Arsenic|As]] accumulated in fronds.<ref name="Tu05">
|[[Arsenic|As]]-[[Arsenic]] || 27,000 (fronds)<ref name="Wang02">{{cite journal |author=Junru Wang, Fang-Jie Zhao, Andrew A. Meharg, Andrea Raab, Joerg Feldmann and Steve P. McGrath |title=Mechanisms of Arsenic Hyperaccumulation in ''Pteris vittata''. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation |journal=Plant Physiol |volume=130 |issue=3 |pages=1552–61 |month=November |year=2002 |doi= |url=http://www.plantphysiol.org/cgi/content/full/130/3/1552}} 18 days' hydroponic experiment with varying concentrations of arsenate and [[phosphate|P]]. Within 8 h, 50% to 78% of the [[Arsenic|As]] taken up is distributed to the fronds, which take from 1.3 to 6.7 times more [[Arsenic|As]] than the roots do. No [[phosphate|P]] for 8 days increases the arsenate's maximum net influx by 2.5-fold; the plants then absorbs 10 times more arsenate than arsenite. If on the other hand the [[phosphate|P]] supply is increased, [[Arsenic|As]] uptake decreases - with a greater effect on the roots than on the shoots. More arsenate decreases the [[phosphate|P]] concentration in the roots, but not in the fronds. [[phosphate|P]] in the uptake solution markedly decreases arsenate uptake. The presence or absence of [[phosphate|P]] does not affect the uptake of arsenite, which translocates more easily than arsenate.</ref> || ''[[Pteris vittata]] L.'' || [[Pteris vittata|Ladder brake fern]] or [[Pteris vittata|Chinese brake fern]] || 26% of [[arsenic]] in the soil removed after 20 weeks' plantation, about 90% [[Arsenic|As]] accumulated in fronds.<ref name="Tu05">
[http://jeq.scijournals.org/cgi/content/abstract/31/5/1671?maxtoshow=&HITS=&hits=&RESULTFORMAT=1&fulltext=phytoremediation+permaculture&andorexactfulltext=or&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT ''Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation''.] By C. Tu, L.Q. Ma and B. Bondada. In 'Plant Physiology' journal, 138:461-469 (April 2005).</ref> || Root extracts reduce [[arsenate]] to [[arsenite]].<ref name="Duan05">[http://www.plantphysiol.org/cgi/content/abstract/138/1/461 ''Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator''.] By Gui-Lan Duan, Y.-G. Zhu, Y.-P. Tong, C. Cai and R. Kneer. In Plant Physiology, 138:461-469 (2005). Yeast (''Saccharomyces c.'') has an arsenate reductase, Acr2p, that uses glutathione as the electron donor. ''[[Pteris vittata]]'' has an [[arsenate]] reductase with the same reaction mechanism, and the same substrate specificity and sensitivity toward inhibitors ([[phosphate|P]] as a [[competitive inhibitor]], [[arsenite]] as a [[noncompetitive inhibitor]]).</ref> || xxx
{{cite journal |author=C. Tu, L.Q. Ma and B. Bondada |title=Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation |journal= |volume=31 |issue=5 |pages= |year= |doi= |url=http://jeq.scijournals.org/cgi/content/abstract/31/5/1671}}</ref> || Root extracts reduce [[arsenate]] to [[arsenite]].<ref name="Duan05">{{cite journal |author=Gui-Lan Duan, Y.-G. Zhu, Y.-P. Tong, C. Cai and R. Kneer |title=Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator |journal=Plant Physiology |volume=138 |issue=1 |pages=461–9 |year=2005 |doi= |url=http://www.plantphysiol.org/cgi/content/abstract/138/1/461}} Yeast (''Saccharomyces c.'') has an arsenate reductase, Acr2p, that uses glutathione as the electron donor. ''[[Pteris vittata]]'' has an [[arsenate]] reductase with the same reaction mechanism, and the same substrate specificity and sensitivity toward inhibitors ([[phosphate|P]] as a [[competitive inhibitor]], [[arsenite]] as a [[noncompetitive inhibitor]]).</ref> || xxx
|-
|-
| [[Arsenic|As]]-[[Arsenic]] || 100-7000 || ''[[Sarcosphaera coronaria]]'' || No common name || [[Arsenic|As]](H) || [[Ectomycorrhizal#Ectomycorrhiza|Ectomycorrhizal]] [[ascomycete]], known from Europe || Stijve ''et al.'', 1990, in Persoonia 14(2): 161-166, Borovička 2004 in Mykologický Sborník 81: 97-99.
| [[Arsenic|As]]-[[Arsenic]] || 100-7000 || ''[[Sarcosphaera coronaria]]'' || No common name || [[Arsenic|As]](H) || [[Ectomycorrhizal#Ectomycorrhiza|Ectomycorrhizal]] [[ascomycete]], known from Europe || Stijve ''et al.'', 1990, in Persoonia 14(2): 161-166, Borovička 2004 in Mykologický Sborník 81: 97-99.
Line 48: Line 48:
| [[Chromium|Cr]]-[[Chromium]] || H- || ''[[Bacopa monnieri]]'' || [[Bacopa monnieri|Smooth Water Hyssop]] || [[Cadmium|Cd]](H), [[Copper|Cu]](H), [[Mercury (element)|Hg]](A), [[Lead|Pb]](A) || Origin India. Aquatic emergent species. || <ref name="MS898"/><ref name="G94">Gurta ''et al.'' 1994</ref>
| [[Chromium|Cr]]-[[Chromium]] || H- || ''[[Bacopa monnieri]]'' || [[Bacopa monnieri|Smooth Water Hyssop]] || [[Cadmium|Cd]](H), [[Copper|Cu]](H), [[Mercury (element)|Hg]](A), [[Lead|Pb]](A) || Origin India. Aquatic emergent species. || <ref name="MS898"/><ref name="G94">Gurta ''et al.'' 1994</ref>
|-
|-
| [[Chromium|Cr]]-[[Chromium]] || xxx || ''[[Brassica juncea]] L.'' || [[Indian mustard]] || [[Cadmium|Cd]](A), [[Chromium|Cr]](A), [[Copper|Cu]](H), [[Nickel|Ni]](H), [[Lead|Pb]](H), [[Lead|Pb]](P), [[Uranium|U]](A), [[Zinc|Zn]](H) || Cultivated in agriculture. || <ref name="MS898"/><ref name="MS19"/><ref name="Bennetta06">[http://jeq.scijournals.org/cgi/content/abstract/32/2/432 ''Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings''.] By L.E. Bennetta, J.L. Burkheada, K.L. Halea, N. Terry, M. Pilona and E.A. H. Pilon-Smits.</ref>
| [[Chromium|Cr]]-[[Chromium]] || xxx || ''[[Brassica juncea]] L.'' || [[Indian mustard]] || [[Cadmium|Cd]](A), [[Chromium|Cr]](A), [[Copper|Cu]](H), [[Nickel|Ni]](H), [[Lead|Pb]](H), [[Lead|Pb]](P), [[Uranium|U]](A), [[Zinc|Zn]](H) || Cultivated in agriculture. || <ref name="MS898"/><ref name="MS19"/><ref name="Bennetta06">{{cite journal |author=L.E. Bennetta, J.L. Burkheada, K.L. Halea, N. Terry, M. Pilona and E.A. H. Pilon-Smits |title=Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings |journal= |volume=32 |issue=2 |pages= |year= |doi= |url=http://jeq.scijournals.org/cgi/content/abstract/32/2/432}}</ref>
|-
|-
| [[Chromium|Cr]]-[[Chromium]] || xxx || ''[[Brassica napus]]'' || [[Rapeseed]] plant || [[Silver|Ag]], [[Mercury (element)|Hg]], [[Lead|Pb]], [[Selenium|Se]], [[Zinc|Zn]] || Phytoextraction || <ref name="Fiegl"/><ref name="MS19"/>
| [[Chromium|Cr]]-[[Chromium]] || xxx || ''[[Brassica napus]]'' || [[Rapeseed]] plant || [[Silver|Ag]], [[Mercury (element)|Hg]], [[Lead|Pb]], [[Selenium|Se]], [[Zinc|Zn]] || Phytoextraction || <ref name="Fiegl"/><ref name="MS19"/>
Line 56: Line 56:
| [[Chromium|Cr]]-[[Chromium]] || 1000 || ''Dicoma niccolifera'' || xxx || xxx || 35 records of plants || <ref name="MS891"/>
| [[Chromium|Cr]]-[[Chromium]] || 1000 || ''Dicoma niccolifera'' || xxx || xxx || 35 records of plants || <ref name="MS891"/>
|-
|-
| [[Chromium|Cr]]-[[Chromium]] || [[root]]s naturally absorb [[pollutant]]s, some organic compounds believed to be [[carcinogen]]ic,<ref name = duke>[http://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html ''Handbook of Energy Crops'']. By J. Duke. Available only online. An excellent source of information on numerous plants.</ref> in concentrations 10,000 times that in the surrounding water.<ref name = biosci>BioScience 26(3): 224. 1976.</ref> || ''[[Eichhornia crassipes]]'' || [[Eichhornia crassipes|Water Hyacinth]] || [[Cadmium|Cd]](H), [[Copper|Cu]](A), [[Mercury (element)|Hg]](H),<ref name = duke/> [[Lead|Pb]](H),<ref name = duke/> [[Zinc|Zn]](A). Also [[Caesium|Cs]], [[Strontium|Sr]], [[Uranium|U]],<ref name = duke/><ref name="PR">[http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm ''Phytoremediation of radionuclides''.]</ref> and [[pesticide]]s.<ref name="Lan04">[http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=6028544&q=&uid=788532439&setcookie=yes ''Recent developments of phytoremediation'']. By J.K. Lan. In Journal of Geological Hazards and Environment Preservation/Dizhi Zaihai Yu Huanjing Baohu (J. Geol. Hazards Environ. Preserv.). Vol. 15, no. 1, pp. 46-51. Mar 2004.</ref> || Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of [[nitrate]]s.<ref name = gohl>''Tropical feeds. Feed information summaries and nutritive values.'' By B. Gohl. 1981. FAO Animal Production and Health Series 12. FAO, Rome. Cited in [http://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html ''Handbook of Energy Crops'']. By J. Duke.</ref> 'The troublesome weed' – hence an excellent source of bioenergy.<ref name = duke/> || <ref name="MS898"/>
| [[Chromium|Cr]]-[[Chromium]] || [[root]]s naturally absorb [[pollutant]]s, some organic compounds believed to be [[carcinogen]]ic,<ref name = duke>[http://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html ''Handbook of Energy Crops'']. By J. Duke. Available only online. An excellent source of information on numerous plants.</ref> in concentrations 10,000 times that in the surrounding water.<ref name = biosci>{{cite journal |author= |title= |journal=BioScience |volume=26 |issue=3 |pages=224 |year=1976 |doi= |url=}}</ref> || ''[[Eichhornia crassipes]]'' || [[Eichhornia crassipes|Water Hyacinth]] || [[Cadmium|Cd]](H), [[Copper|Cu]](A), [[Mercury (element)|Hg]](H),<ref name = duke/> [[Lead|Pb]](H),<ref name = duke/> [[Zinc|Zn]](A). Also [[Caesium|Cs]], [[Strontium|Sr]], [[Uranium|U]],<ref name = duke/><ref name="PR">[http://rydberg.biology.colostate.edu/Phytoremediation/2000/Lawra/BZ580.htm ''Phytoremediation of radionuclides''.]</ref> and [[pesticide]]s.<ref name="Lan04">{{cite journal |author=J.K. Lan |title=Recent developments of phytoremediation |journal=J. Geol. Hazards Environ. Preserv. |volume=15 |issue=1 |pages=46–51 |month=March |year=2004 |doi= |url=http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=6028544&q=&uid=788532439&setcookie=yes}}</ref> || Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of [[nitrate]]s.<ref name = gohl>''Tropical feeds. Feed information summaries and nutritive values.'' By B. Gohl. 1981. FAO Animal Production and Health Series 12. FAO, Rome. Cited in [http://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html ''Handbook of Energy Crops'']. By J. Duke.</ref> 'The troublesome weed' – hence an excellent source of bioenergy.<ref name = duke/> || <ref name="MS898"/>
|-
|-
| [[Chromium|Cr]]-[[Chromium]] || xxx || ''[[Helianthus annuus]]'' || Sunflower || xxx || Phytoextraction et [[rhizofiltration]] || <ref name="MS898"/><ref name="MS19"/>
| [[Chromium|Cr]]-[[Chromium]] || xxx || ''[[Helianthus annuus]]'' || Sunflower || xxx || Phytoextraction et [[rhizofiltration]] || <ref name="MS898"/><ref name="MS19"/>
Line 74: Line 74:
| [[Chromium|Cr]]-[[Chromium]] || 100 || ''Sutera fodina'' || xxx || xxx || xxx || <ref name="MS891"/><ref name="W74">Wild 1974</ref><ref name="BY84">Brooks & Yang 1984</ref>
| [[Chromium|Cr]]-[[Chromium]] || 100 || ''Sutera fodina'' || xxx || xxx || xxx || <ref name="MS891"/><ref name="W74">Wild 1974</ref><ref name="BY84">Brooks & Yang 1984</ref>
|-
|-
| [[Chromium|Cr]]-[[Chromium]] || A- || ''[[Thlaspi caerulescens]]'' || xxx || [[Cadmium|Cd]](H), [[Cobalt|Co]](H), [[Copper|Cu]](H), [[Molybdenum|Mo]], [[Nickel|Ni]](H), [[Lead|Pb]](H), [[Zinc|Zn]](H) || Phytoextraction. ''[['[[Thlaspi caerulescens|T. caerulescens]]'' may acidify its rhizosphere, which would affect metal uptake by increasing available metals<ref name="Delorme01">[http://pubs.nrc-cnrc.gc.ca/cgi-bin/rp/rp2_abst_e?cjm_w01-067_47_ns_nf_cjm47-01] T.A. Delorme, J.V. Gagliardi, J.S. Angle and R.L. Chaney. ''Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations''. Conseil National de Recherches du Canada. Can. J. Microbiol./Rev. can. microbiol. 47(8): 773-776 (2001) </ref> || <ref name="MS898"/><ref name="MS891"/><ref name="MS19"/><ref name="Prasad05">[http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202005000100010] Majeti Narasimha Vara Prasad, ''Nickelophilous plants and their significance in phytotechnologies.'' Braz. J. Plant Physiol. Vol.17 no.1 Londrina Jan./Mar. 2005</ref><ref name="BB89">Baker & Brooks, 1989</ref><ref name="Lombi01">[http://jeq.scijournals.org/cgi/content/abstract/30/6/1919?maxtoshow=&HITS=&hits=&RESULTFORMAT=1&fulltext=phytoremediation+permaculture&andorexactfulltext=or&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT] E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath, ''Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction''. Journal of Environmental Quality 30:1919-1926 (2001)</ref>
| [[Chromium|Cr]]-[[Chromium]] || A- || ''[[Thlaspi caerulescens]]'' || xxx || [[Cadmium|Cd]](H), [[Cobalt|Co]](H), [[Copper|Cu]](H), [[Molybdenum|Mo]], [[Nickel|Ni]](H), [[Lead|Pb]](H), [[Zinc|Zn]](H) || Phytoextraction. ''[['[[Thlaspi caerulescens|T. caerulescens]]'' may acidify its rhizosphere, which would affect metal uptake by increasing available metals<ref name="Delorme01">{{cite journal |author=T.A. Delorme, J.V. Gagliardi, J.S. Angle and R.L. Chaney |title=Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations |journal=Can. J. Microbiol. |volume=47 |issue=8 |pages=773–6 |year=2001 |doi= |url=http://pubs.nrc-cnrc.gc.ca/cgi-bin/rp/rp2_abst_e?cjm_w01-067_47_ns_nf_cjm47-01}}</ref> || <ref name="MS898"/><ref name="MS891"/><ref name="MS19"/><ref name="Prasad05">{{cite journal |author=Majeti Narasimha Vara Prasad |title=Nickelophilous plants and their significance in phytotechnologies |journal=Braz. J. Plant Physiol. |volume=17 |issue=1 |pages= |date=Jan/Mar 2005 |doi= |url=http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202005000100010}}</ref><ref name="BB89">Baker & Brooks, 1989</ref><ref name="Lombi01">{{cite journal |author=E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath |title=Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction |journal=Journal of Environmental Quality |volume=30 |issue=6 |pages=1919–26 |year=2001 |doi= |url=http://jeq.scijournals.org/cgi/content/abstract/30/6/1919}}</ref>
|-
|-
| [[Copper|Cu]]-[[Copper]] || 9000 || ''Aeolanthus biformifolius'' || xxx || xxx || xxx || <ref name="Morrison79">[http://www.springerlink.com/content/v51188t510jh4112/] R.S. Morrison, R.R. Brooks, R.D. Reeves and F. Malaisse. ''Copper and cobalt uptake by metallophytes from Zaïre''. Plant and Soil, Volume 53, Number 4 / December, 1979</ref>
| [[Copper|Cu]]-[[Copper]] || 9000 || ''Aeolanthus biformifolius'' || xxx || xxx || xxx || <ref name="Morrison79">{{cite journal |author=R.S. Morrison, R.R. Brooks, R.D. Reeves and F. Malaisse |title=Copper and cobalt uptake by metallophytes from Zaïre |journal=Plant and Soil |volume=53 |issue=4 |pages= |month=December |year=1979 |doi= |url=http://www.springerlink.com/content/v51188t510jh4112/}}</ref>
|-
|-
| [[Copper|Cu]]-[[Copper]] || xxx || ''[[Athyrium]] yokoscense'' || (Japanese false spleenwort?) || [[Cadmium|Cd]](A), [[Lead|Pb]](H), [[Zinc|Zn]](H) || Origin Japan. || <ref name="MS898"/>
| [[Copper|Cu]]-[[Copper]] || xxx || ''[[Athyrium]] yokoscense'' || (Japanese false spleenwort?) || [[Cadmium|Cd]](A), [[Lead|Pb]](H), [[Zinc|Zn]](H) || Origin Japan. || <ref name="MS898"/>
Line 90: Line 90:
| [[Copper|Cu]]-[[Copper]] || xxx || ''[[Eichhornia crassipes]]'' || [[Water Hyacinth]] || [[Cadmium|Cd]](H), [[Chromium|Cr]](A), [[Mercury (element)|Hg]](H), [[Lead|Pb]](H), [[Zinc|Zn]](A), Also [[Cesium|Cs]], [[Strontium|Sr]], [[Uranium|U]],<ref name="PR"/> and pesticides.<ref name="Lan04"/> || Pantropical/Subtropical, 'the troublesome weed'. || <ref name="MS898"/>
| [[Copper|Cu]]-[[Copper]] || xxx || ''[[Eichhornia crassipes]]'' || [[Water Hyacinth]] || [[Cadmium|Cd]](H), [[Chromium|Cr]](A), [[Mercury (element)|Hg]](H), [[Lead|Pb]](H), [[Zinc|Zn]](A), Also [[Cesium|Cs]], [[Strontium|Sr]], [[Uranium|U]],<ref name="PR"/> and pesticides.<ref name="Lan04"/> || Pantropical/Subtropical, 'the troublesome weed'. || <ref name="MS898"/>
|-
|-
| [[Copper|Cu]]-[[Copper]] || 1000 || ''Haumaniustrum robertii'' || Copper flower || xxx || 27 records of plants. Origin Africa. This species' [[phanerogam]] has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.<ref name="SPR77">[http://www.springerlink.com/content/m4145xq643407642/] R. R. Brooks, ''Copper and cobalt uptake by Haumaniustrum species''.</ref> || <ref name="MS891"/><ref name="BB89"/>
| [[Copper|Cu]]-[[Copper]] || 1000 || ''Haumaniustrum robertii'' || Copper flower || xxx || 27 records of plants. Origin Africa. This species' [[phanerogam]] has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.<ref name="SPR77">{{cite journal |author=R. R. Brooks |title=Copper and cobalt uptake by Haumaniustrum species |journal= |volume= |issue= |pages= |year= |doi= |url=http://www.springerlink.com/content/m4145xq643407642/}}</ref> || <ref name="MS891"/><ref name="BB89"/>
|-
|-
| [[Copper|Cu]]-[[Copper]] || xxx || ''[[Helianthus annuus]]'' || [[Sunflower]] || xxx || Phytoextraction with [[rhizofiltration]] || <ref name="MS898"/><ref name="BB89"/>
| [[Copper|Cu]]-[[Copper]] || xxx || ''[[Helianthus annuus]]'' || [[Sunflower]] || xxx || Phytoextraction with [[rhizofiltration]] || <ref name="MS898"/><ref name="BB89"/>

Revision as of 13:45, 26 July 2010

This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Palladium (Pd), Platinum (Pt), Selenium (Se) et Zinc (Zn).

Hyperaccumulators table – 1

hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, naphthalene, Pb, Pd, Pt, Se, Zn – accumulation rates
Contaminant Accumulation rates (in mg/kg dry weight) Latin name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
Al-Aluminium A- Agrostis castellana Highland Bent Grass As(A), Mn(A), Pb(A), Zn(A) Origin Portugal. [1]
Al - Aluminium 1000 Hordeum vulgare Barley xxx 25 records of plants. [2][3]
Al - Aluminium xxx Hydrangea spp. Hydrangea (a.k.a. Hortensia) xxx xxx xxx
Al - Aluminium Al concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[4] Melastoma malabathricum L. Blue Tongue, or Native Lassiandra P competes with aluminium and reduces uptake.[5] xxx
Al-Aluminium xxx Solidago hispida (Solidago canadensis L.) Hairy Goldenrod xxx Origin Canada. [2][3]
Al-Aluminium 100 Vicia faba Horse Bean xxx xxx [2][3]
Ag-Silver xxx Brassica napus Rapeseed plant Cr, Hg, Pb, Se, Zn Phytoextraction [6][7]
Ag-Silver xxx Salix spp. Osier spp. Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U, Zn (S. viminalix);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [7]
Ag-Silver xxx Amanita strobiliformis European Pine Cone Lepidella Ag(H) Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas [10]
Ag-Silver 10-1200 Brassica juncea Indian Mustard Ag(H) Can form alloys of silver-gold-copper [11]
As-Arsenic 100 Agrostis capillaris L. Common Bent Grass, Browntop. (= A. tenuris) Al(A), Mn(A), Pb(A), Zn(A) xxx [3]
As-Arsenic H- 'Agrostis castellana Highland Bent Grass Al(A), Mn(A), Pb(A), Zn(A) Origin Portugal. [1]
As-Arsenic 1000 Agrostis tenerrima Trin. Colonial bentgrass xxx 4 records of plants [3][12]
As-Arsenic 27,000 (fronds)[13] Pteris vittata L. Ladder brake fern or Chinese brake fern 26% of arsenic in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[14] Root extracts reduce arsenate to arsenite.[15] xxx
As-Arsenic 100-7000 Sarcosphaera coronaria No common name As(H) Ectomycorrhizal ascomycete, known from Europe Stijve et al., 1990, in Persoonia 14(2): 161-166, Borovička 2004 in Mykologický Sborník 81: 97-99.
Be-Beryllium xxx xxx xxx xxx No reports found for accumulation [3]
Cr-Chromium xxx Azolla spp. xxx xxx xxx [3][16]
Cr-Chromium H- Bacopa monnieri Smooth Water Hyssop Cd(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][17]
Cr-Chromium xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) Cultivated in agriculture. [1][7][18]
Cr-Chromium xxx Brassica napus Rapeseed plant Ag, Hg, Pb, Se, Zn Phytoextraction [6][7]
Cr-Chromium A- Vallisneria americana Tape Grass Cd(H), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Cr-Chromium 1000 Dicoma niccolifera xxx xxx 35 records of plants [3]
Cr-Chromium roots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[19] in concentrations 10,000 times that in the surrounding water.[20] Eichhornia crassipes Water Hyacinth Cd(H), Cu(A), Hg(H),[19] Pb(H),[19] Zn(A). Also Cs, Sr, U,[19][21] and pesticides.[22] Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[23] 'The troublesome weed' – hence an excellent source of bioenergy.[19] [1]
Cr-Chromium xxx Helianthus annuus Sunflower xxx Phytoextraction et rhizofiltration [1][7]
Cr A- Hydrilla verticillata Hydrilla Cd(H) Hg(H), Pb(H) xxx [1]
Cr-Chromium xxx Medicago sativa Alfalfa xxx xxx [3][24]
Cr-Chromium xxx Pistia stratiotes Water lettuce Cd(T), Hg(H), Cr(H), Cu(T) xxx [1][3][25]
Cr-Chromium xxx Salix spp. Osier spp. Ag, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U, Zn (S. viminalix);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [7]
Cr-Chromium xxx Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) xxx [1][3][26]
Cr-Chromium xxx Spirodela polyrhiza Giant Duckweed Cd(H), Ni(H), Pb(H), Zn(A) Native to North America. [1][3][26]
Cr-Chromium 100 Sutera fodina xxx xxx xxx [3][27][28]
Cr-Chromium A- Thlaspi caerulescens xxx Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. [['T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[29] [1][3][7][30][31][32]
Cu-Copper 9000 Aeolanthus biformifolius xxx xxx xxx [33]
Cu-Copper xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Pb(H), Zn(H) Origin Japan. [1]
Cu-Copper A- Azolla filiculoides Pacific mosquitofern Ni(A), Pb(A), Mn(A) Origin Africa. Floating plant. [1]
Cu-Copper H- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][17]
Cu-Copper xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) cultivated [1][7][18]
Cu-Copper H- Callisneria Americana Tape Grass Cd(H), Cr(A), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Cu-Copper xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U,[21] and pesticides.[22] Pantropical/Subtropical, 'the troublesome weed'. [1]
Cu-Copper 1000 Haumaniustrum robertii Copper flower xxx 27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[34] [3][31]
Cu-Copper xxx Helianthus annuus Sunflower xxx Phytoextraction with rhizofiltration [1][31]
Cu-Copper 1000 Larrea tridentata Creosote Bush xxx 67 records of plants. Origin U.S. [3][31]
Cu-Copper H- Lemna minor Duckweed Pb(H), Cd(H), Zn(A) Native to North America and widespread worldwide. [1]
Cu-Copper T- Pistia stratiotes Water Lettuce Cd(T), Hg(H), Cr(H) Pantropical. Origin South U.S.A. Aquatic herb. [1]
Cu-Copper xxx Thlaspi caerulescens Alpine pennycress Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. Copper noticeably limits its growth.[32] [1][3][7][29][30][31][32]
Mn-Manganese A- 'Agrostis castellana Highland Bent Grass Al(A), As(A), Pb(A), Zn(A) Origin Portugal. [1]
Mn-Manganese xxx Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Pb(A) Origin Africa. Floating plant. [1]
Mn-Manganese xxx Brassica juncea L. Indian mustard xxx xxx [7][18]
Mn-Manganese xxx Helianthus annuus Sunflower xxx Phytoextraction et rhizofiltration [7]
Mn-Manganese 1000 Macademia neurophylla xxx xxx 28 records of plants [3][35]
Mn-Manganese 200 xxx xxx xxx xxx [3]
Hg-Mercury A- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1][17]
Hg-Mercury xxx Brassica napus Rapeseed plant Ag, Cr, Pb, Se, Zn Phytoextraction [6][7]
Hg-Mercury xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Pb(H), Zn(A)Also Cs, Sr, U,[21] and pesticides.[22] Pantropical/Subtropical, 'the troublesome weed'. [1]
Hg-Mercury H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Pb(H) xxx [1]
Hg-Mercury 1000 Pistia stratiotes Water lettuce Cd(T), Cr(H), Cu(T) 35 records of plants [1][3][31][36]
Hg-Mercury xxx Salix spp. Osier spp. Ag, Cr, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U, Zn (S. viminalix);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [7]
Mo-molybdenum 1500 Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) phytoextraction [1][3][7][29][30][31][32]
naphthalene xxx Festuca arundinacea Tall Fescue xxx Increases catabolic genes and the mineralization of naphthalene. [37]
naphthalene xxx Trifolium hirtum Pink clover xxx Decreases catabolic genes and the mineralization of naphthalene. [37]
Pb-Lead A- 'Agrostis castellana 'Highland Bent Grass Al(A), As(H), Mn(A), Zn(A) Origin Portugal. [1]
Pb-Lead xxx Ambrosia artemisiifolia Ragweed xxx xxx [6]
Pb-Lead xxx Armeria maritima Seapink Thrift xxx xxx [6]
Pb-Lead xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Zn(H) Origin Japan. [1]
Pb-Lead A- Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Mn(A) Origin Africa. Floating plant. [1]
Pb-Lead A- Bacopa monnieri Smooth Water Hyssop Cd(H), Cr(H), Cu(H), Hg(A) Origin India. Aquatic emergent species. [1][17]
Pb-Lead H- Brassica juncea Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) 79 recorded plants. Phytoextraction [1][3][6][7][18][29][31][32][38]
Pb-Lead xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Se, Zn Phytoextraction [6][7]
Pb-Lead xxx Brassica oleracea Ornemental Kale et Cabbage, Broccoli xxx xxx [6]
Pb-Lead H- Callisneria Americana Tape Grass Cd(H), Cr(A), Cu(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]
Pb-Lead xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U,[21] and pesticides.[22] Pantropical/Subtropical, 'the troublesome weed'. [1]
Pb-Lead xxx Festuca ovina Blue Sheep Fescue xxx xxx [6]
Pb-Lead xxx Helianthus annuus Sunflower xxx Phytoextraction et rhizofiltration [1][6][7][8][38]
Pb-Lead H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Hg(H) xxx [1]
Pb-Lead H- Lemna minor Duckweed Cd(H), Cu(H), Zn(H) Native to North America and widespread worldwide. [1]
Pb-Lead xxx Salix viminalis Common Osier Cd, U, Zn;[8] Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products (S. spp.);[7] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes) [8]
Pb-Lead H- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India. [1]
Pb-Lead xxx Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Zn(A) Native to North America. [1][3][26]
Pb-Lead xxx Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) Phytoextraction. [1][3][7][29][30][31][32]
Pb-Lead xxx Thlaspi rotundifolium Round-leaved Pennycress xxx xxx [6]
Pb-Lead xxx Triticum aestivum Common Wheat xxx xxx [6]
Pb-Lead A-200 xxx xxx xxx xxx [3]
Pd-Palladium xxx xxx xxx xxx No reports found for accumulation. [3]
Pt-Platinum xxx xxx xxx xxx No reports found for accumulation. [3]
Se-Selenium .012-20 Amanita muscaria Fly agaric xxx Cap contains higher concentrations than stalks[39]
Se-Selenium xxx Brassica juncea Indian mustard xxx Rhizosphere bacteria enhance accumulation.[40] [7]
Se-Selenium xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Zn Phytoextraction. [6][7]
Se-Selenium Low rates of Se volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of Se in Muskgrass. Chara canescens Desv. & Lois Muskgrass xxx Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[41] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[42] [43]
Se-Selenium xxx Kochia scoparia xxx U,[8] Cr, Pb, Hg, Ag, Zn Perchlorate (wetland halophytes). Phytoextraction. [1][7]
Se-Selenium xxx Salix spp. Osier spp. Ag, Cr, Hg, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U, Zn (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes). [7]
Zn-Zinc A- 'Agrostis castellana Highland Bent Grass Al(A), As(H), Mn(A), Pb(A) Origin Portugal. [1]
Zn-Zinc xxx Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Pb(H) Origin Japan. [1]
Zn-Zinc xxx Brassicaeae xxx Hyperaccumulators: Cd, Cs, Ni, Sr Phytoextraction. [7]
Zn-Zinc xxx Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A). Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) [1][7][18]
Zn-Zinc xxx Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Se Phytoextraction [6][7]
Zn-Zinc xxx Helianthus annuus Sunflower xxx Phytoextraction et rhizofiltration. [7][8]
Zn-Zinc xxx Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Pb(H)Also Cs, Sr, U,[21] and pesticides.[22] Pantropical/Subtropical, 'the troublesome weed'. [1]
Zn-Zinc xxx Salix viminalis Common Osier Ag, Cr, Hg, Se, Petroleum hydrocarbons, Organic solvents, MTBE, TCE and by-products;[7] Cd, Pb, U (S. viminalis);[8] Potassium ferrocyanide (S. babylonica L.)[9] Phytoextraction. Perchlorate (wetland halophytes). [8]
Zn-Zinc A- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India. [1]
Zn-Zinc 1400 Silene vulgaris (Moench) Garcke (Caryophyllaceae) Bladder campion xxx xxx Ernst et al. (1990)
Zn-Zinc xxx Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Pb(H) Native to North America. [1][3][26]
Zn-Zinc H-10,000 Thlaspi caerulescens (Brassica) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[29] [1][3][7][30][31][32][38]
Zn-Zinc xxx Trifolium pratense Red Clover Nonmetal accumulator. Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.[29] xxx

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

References

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons, page 898. Cite error: The named reference "MS898" was defined multiple times with different content (see the help page).
  2. ^ a b c Grauer & Horst 1990
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891.
  4. ^ Toshihiro Watanabe, Mitsuru Osaki, Teruhiko Yoshihara and Toshiaki Tadano (1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, [[Melastoma affine|Melastoma malabathricum]] L." Plant and Soil. 201 (2): 165–173. doi:10.1023/A:1004341415878. {{cite journal}}: URL–wikilink conflict (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  5. ^ Warm Climate Production Guidelines for Japanese Hydrangeas. By Rick Shoellhorn and Alexis A. Richardson. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 5, 2005.
  6. ^ a b c d e f g h i j k l m n A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray Cite error: The named reference "Fiegl" was defined multiple times with different content (see the help page).
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Phytoremediation. By McCutcheon & Schnoor. 2003, New Jersey, John Wiley & Sons pg 19.
  8. ^ a b c d e f g h i j k Ulrich Schmidt (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". J. Environ. Qual. 32 (6): 1939–54.
  9. ^ a b c d e f Yu XZ, Zhou PH, Yang YM (2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology. 15 (5): 461–7. doi:10.1007/s10646-006-0081-5. PMID 16703454. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) Cite error: The named reference "Yu06" was defined multiple times with different content (see the help page).
  10. ^ Borovička J., Řanda Z., Jelínek E., Kotrba P., Dunn C.E. (2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research. 111: 1339–44.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ R.G. Haverkamp and A.T. Marshall and D. van Agterveld (2007). "Pick your Carats: Nanoparticles of Gold-Silver-Copper Alloy Produced In Vivo". J. Nanoparticle Res. 9: 697–700.
  12. ^ Porter and Peterson 1975
  13. ^ Junru Wang, Fang-Jie Zhao, Andrew A. Meharg, Andrea Raab, Joerg Feldmann and Steve P. McGrath (2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol. 130 (3): 1552–61. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) 18 days' hydroponic experiment with varying concentrations of arsenate and P. Within 8 h, 50% to 78% of the As taken up is distributed to the fronds, which take from 1.3 to 6.7 times more As than the roots do. No P for 8 days increases the arsenate's maximum net influx by 2.5-fold; the plants then absorbs 10 times more arsenate than arsenite. If on the other hand the P supply is increased, As uptake decreases - with a greater effect on the roots than on the shoots. More arsenate decreases the P concentration in the roots, but not in the fronds. P in the uptake solution markedly decreases arsenate uptake. The presence or absence of P does not affect the uptake of arsenite, which translocates more easily than arsenate.
  14. ^ C. Tu, L.Q. Ma and B. Bondada. "Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation". 31 (5). {{cite journal}}: Cite journal requires |journal= (help)
  15. ^ Gui-Lan Duan, Y.-G. Zhu, Y.-P. Tong, C. Cai and R. Kneer (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology. 138 (1): 461–9.{{cite journal}}: CS1 maint: multiple names: authors list (link) Yeast (Saccharomyces c.) has an arsenate reductase, Acr2p, that uses glutathione as the electron donor. Pteris vittata has an arsenate reductase with the same reaction mechanism, and the same substrate specificity and sensitivity toward inhibitors (P as a competitive inhibitor, arsenite as a noncompetitive inhibitor).
  16. ^ Priel 1995.
  17. ^ a b c d Gurta et al. 1994
  18. ^ a b c d e L.E. Bennetta, J.L. Burkheada, K.L. Halea, N. Terry, M. Pilona and E.A. H. Pilon-Smits. "Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings". 32 (2). {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  19. ^ a b c d e Handbook of Energy Crops. By J. Duke. Available only online. An excellent source of information on numerous plants.
  20. ^ BioScience. 26 (3): 224. 1976. {{cite journal}}: Missing or empty |title= (help)
  21. ^ a b c d e Phytoremediation of radionuclides.
  22. ^ a b c d e J.K. Lan (2004). "Recent developments of phytoremediation". J. Geol. Hazards Environ. Preserv. 15 (1): 46–51. {{cite journal}}: Unknown parameter |month= ignored (help)
  23. ^ Tropical feeds. Feed information summaries and nutritive values. By B. Gohl. 1981. FAO Animal Production and Health Series 12. FAO, Rome. Cited in Handbook of Energy Crops. By J. Duke.
  24. ^ Tiemmann et al. 1994
  25. ^ Sen et al. 1987
  26. ^ a b c d Srivastav 1994
  27. ^ Wild 1974
  28. ^ Brooks & Yang 1984
  29. ^ a b c d e f g T.A. Delorme, J.V. Gagliardi, J.S. Angle and R.L. Chaney (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Can. J. Microbiol. 47 (8): 773–6.{{cite journal}}: CS1 maint: multiple names: authors list (link) Cite error: The named reference "Delorme01" was defined multiple times with different content (see the help page).
  30. ^ a b c d e Majeti Narasimha Vara Prasad (Jan/Mar 2005). "Nickelophilous plants and their significance in phytotechnologies". Braz. J. Plant Physiol. 17 (1). {{cite journal}}: Check date values in: |date= (help)
  31. ^ a b c d e f g h i j Baker & Brooks, 1989
  32. ^ a b c d e f g E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality. 30 (6): 1919–26.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ R.S. Morrison, R.R. Brooks, R.D. Reeves and F. Malaisse (1979). "Copper and cobalt uptake by metallophytes from Zaïre". Plant and Soil. 53 (4). {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  34. ^ R. R. Brooks. "Copper and cobalt uptake by Haumaniustrum species". {{cite journal}}: Cite journal requires |journal= (help)
  35. ^ Baker & Walker 1990
  36. ^ Atri 1983
  37. ^ a b [1] S.D. Siciliano, J.J. Germida, K. Banks and C. W. Greer, Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial. Applied and Environmental Microbiology, January 2003, p. 483-489, Vol. 69, No. 1
  38. ^ a b c Phytoremediation Decision Tree, ITRC
  39. ^ http://www.springerlink.com/content/p210006717p20753/
  40. ^ [2] Mark P. de Souza, Dara Chu, May Zhao, Adel M. Zayed, Steven E. Ruzin, Denise Schichnes, and Norman Terry, Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard, Plant Physiol. (1999) 119: 565-574
  41. ^ X-ray absorption spectroscopy speciation analysis.
  42. ^ Average Se concentration of 22 µg L-1 supplied over a 24-d experimental period.
  43. ^ Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms. By Z.-Q. Lin, M.P. de Souza, I. J. Pickering and N. Terry. Journal of Environmental Quality 2002, 31:2104-2110