Scanning probe microscopy: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 273: Line 273:
| journal = Applied Physics Letters
| journal = Applied Physics Letters
| year = 1992}}</ref>
| year = 1992}}</ref>
*SXSTM [[synchrotron x-ray scanning tunneling microscopy]]
*SXSTM, [[synchrotron x-ray scanning tunneling microscopy]]{{Cite conference
| publisher = Springer
| doi = 10.1007/978-1-4419-7167-8_14
| volume = 1
| pages = 405–431
| last = Rose
| first = V.
| coauthors = J.W. Freeland, S.K. Streiffer
| title = New Capabilities at the Interface of X-Rays and Scanning Tunneling Microscopy
| booktitle = Scanning Probe Microscopy of Functional Materials
| location = Beijing, China
| date = 2011
| url = http://www.springerlink.com/content/p7390580006x7434/
}}</ref>


Of these techniques AFM and STM are the most commonly used for roughness measurements.
Of these techniques AFM and STM are the most commonly used for roughness measurements.

Revision as of 03:17, 1 February 2011

Scanning Probe Microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. An image of the surface is obtained by mechanically moving the probe in a raster scan of the specimen, line by line, and recording the probe-surface interaction as a function of position. SPM was founded with the invention of the scanning tunneling microscope in 1981.

Many scanning probe microscopes can image several interactions simultaneously. The manner of using these interactions to obtain an image is generally called a mode.

The resolution varies somewhat from technique to technique, but some probe techniques reach a rather impressive atomic resolution. They owe this largely to the ability of piezoelectric actuators to execute motions with a precision and accuracy at the atomic level or better on electronic command. One could rightly call this family of techniques 'piezoelectric techniques'. The other common denominator is that the data are typically obtained as a two-dimensional grid of data points, visualized in false color as a computer image.

Established types of scanning probe microscopy

Of these techniques AFM and STM are the most commonly used for roughness measurements.

Probe tips

Probe tips are normally made of platinum/iridium, silicon nitride or gold. There are two main methods for obtaining a sharp probe tip, acid etching and cutting. The first involves dipping a wire end first into an acid bath and waiting until it has etched through the wire and the lower part drops away. The remainder is then removed and the resulting tip is often one atom in diameter. An alternative and much quicker method is to take a thin wire and cut it with a pair of scissors or a scalpel. Testing the tip produced via this method on a sample with a known profile will indicate whether the tip is good or not and a single sharp point is achieved roughly 50% of the time. It is not uncommon for this method to result in a tip with more than one peak; one can easily discern this upon scan due to a high level of ghost images.

Advantages of scanning probe microscopy

  • The resolution of the microscopes is not limited by diffraction, but only by the size of the probe-sample interaction volume (i.e., point spread function), which can be as small as a few picometres. Hence the ability to measure small local differences in object height (like that of 135 picometre steps on <100> silicon) is unparalleled. Laterally the probe-sample interaction extends only across the tip atom or atoms involved in the interaction.
  • The interaction can be used to modify the sample to create small structures (nanolithography).
  • Unlike electron microscope methods, specimens do not require a partial vacuum but can be observed in air at standard temperature and pressure or while submerged in a liquid reaction vessel.

Disadvantages of scanning probe microscopy

  • The detailed shape of the scanning tip is sometimes difficult to determine. Its effect on the resulting data is particularly noticeable if the specimen varies greatly in height over lateral distances of 10 nm or less.
  • The scanning techniques are generally slower in acquiring images, due to the scanning process. As a result, efforts are being made to greatly improve the scanning rate. Like all scanning techniques, the embedding of spatial information into a time sequence opens the door to uncertainties in metrology, say of lateral spacings and angles, which arise due to time-domain effects like specimen drift, feedback loop oscillation, and mechanical vibration.
  • The maximum image size is generally smaller.
  • Scanning probe microscopy is often not useful for examining buried solid-solid or liquid-liquid interfaces.

References

  1. ^ Binnig, G. (1986-03-03). "Atomic Force Microscope". Physical Review Letters. 56 (9): 930–933. doi:10.1103/PhysRevLett.56.930. PMID 10033323. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  2. ^ Kaiser, W. J. (1988). "Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy". Physical Review Letters. 60 (14): 1406–1409. doi:10.1103/PhysRevLett.60.1406. PMID 10038030. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ Zhang, L. (1999). "Nanostructural conductivity and surface-potential study of low-field-emission carbon films with conductive scanning probe microscopy". Applied Physics Letters. 75 (22): 3527–3529. doi:10.1063/1.125377. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ Weaver, J. M. R. (1991). "High resolution atomic force microscopy potentiometry". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 9 (3): 1559–1561. doi:10.1116/1.585423. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ Higgins, S. R. (1996-03). "Morphology and dissolution processes of metal sulfide minerals observed with the electrochemical scanning tunneling microscope". J. Vac. Sci. Technol. B. Vol. 14. AVS. pp. 1360–1364. doi:10.1116/1.589098. Retrieved 2009-10-05. {{cite conference}}: Check date values in: |date= (help); Unknown parameter |booktitle= ignored (|book-title= suggested) (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  6. ^ Fritz, M. (1994-05). "Visualization and identification of intracellular structures by force modulation microscopy and drug induced degradation". The 1993 international conference on scanning tunneling microscopy. The 1993 international conference on scanning tunneling microscopy. Vol. 12. Beijing, China: AVS. pp. 1526–1529. doi:10.1116/1.587278. Retrieved 2009-10-05. {{cite conference}}: Check date values in: |date= (help); Unknown parameter |booktitle= ignored (|book-title= suggested) (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ Nonnenmacher, M. (1991). "Kelvin probe force microscopy". Applied Physics Letters. 58 (25): 2921–2923. doi:10.1063/1.105227. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  8. ^ Hartmann, U. (1988). "Magnetic force microscopy: Some remarks from the micromagnetic point of view". Journal of Applied Physics. 64 (3): 1561–1564. doi:10.1063/1.341836.
  9. ^ Sidles, J. A. (1995). "Magnetic resonance force microscopy". Reviews of Modern Physics. 67 (1): 249. doi:10.1103/RevModPhys.67.249. {{cite journal}}: |access-date= requires |url= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  10. ^ BETZIG, E. (1991-03-22). "Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale". Science. 251 (5000): 1468–1470. doi:10.1126/science.251.5000.1468. PMID 17779440. Retrieved 2009-10-05. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  11. ^ Roelofs, A. (2000). "Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy". Applied Physics Letters. 77 (21): 3444–3446. doi:10.1063/1.1328049. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  12. ^ Reddick, R. C. (1989-01-01). "New form of scanning optical microscopy". Physical Review B. 39 (1): 767. doi:10.1103/PhysRevB.39.767. Retrieved 2009-10-05. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  13. ^ Matey, J. R. (1985). "Scanning capacitance microscopy". Journal of Applied Physics. 57 (5): 1437–1444. doi:10.1063/1.334506. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  14. ^ Eriksson, M. A. (1996-07-29). "Cryogenic scanning probe characterization of semiconductor nanostructures". Applied Physics Letters. 69 (5): 671–673. doi:10.1063/1.117801. Retrieved 2009-10-05. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  15. ^ Hansma, PK (1989-02-03). "The scanning ion-conductance microscope". Science. 243 (4891): 641–643. doi:10.1126/science.2464851. PMID 2464851. Retrieved 2009-10-05. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  16. ^ Wiesendanger, R. (2001-07-25). "Nano- and atomic-scale magnetism studied by spin-polarized scanning tunneling microscopy and spectroscopy". Solid State Communications. 119 (4–5): 341–355. doi:10.1016/S0038-1098(01)00103-X. ISSN 0038-1098. Retrieved 2009-10-05. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  17. ^ De Wolf, P. (1995). "Characterization of a point-contact on silicon using force microscopy-supported resistance measurements". Applied Physics Letters. 66 (12): 1530–1532. doi:10.1063/1.113636. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  18. ^ Xu, J. B. (1994). "Thermal sensors for investigation of heat transfer in scanning probe microscopy". Review of Scientific Instruments. 65 (7): 2262–2266. doi:10.1063/1.1145225. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  19. ^ Binnig, G. (1982). "Tunneling through a controllable vacuum gap". Applied Physics Letters. 40 (2): 178–180. doi:10.1063/1.92999. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  20. ^ Trenkler, T. (1998). "Nanopotentiometry: Local potential measurements in complementary metal--oxide--semiconductor transistors using atomic force microscopy". J. Vac. Sci. Techn. B. 16: 367–372. doi:10.1116/1.589812. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  21. ^ http://wwwex.physik.uni-ulm.de/lehre/physikalischeelektronik/phys_elektr/node252.html
  22. ^ Chang, A. M. (1992). "Scanning Hall probe microscopy". Applied Physics Letters. 61 (16): 1974–1976. doi:10.1063/1.108334. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)

External links