Jump to content

Langbeinites: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Sulfates: ref NH4Mg
→‎Sulfates: ref AmMn cell size probably a transition around -90 too
Line 110: Line 110:
|K<sub>2</sub>CaMg(SO<sub>4</sub>)<sub>3</sub>
|K<sub>2</sub>CaMg(SO<sub>4</sub>)<sub>3</sub>
|430.77
|430.77
|made
|comment
|
|
|
|
Line 159: Line 159:
|(NH<sub>4</sub>)<sub>2</sub>Ca<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>
|(NH<sub>4</sub>)<sub>2</sub>Ca<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>
|404.42
|404.42
|made
|
|158
|158
|
|
Line 202: Line 202:
|434.14
|434.14
|made
|made
|
|
|
|
|10.1908<ref name="Hikita2005">{{cite journal|last=Hikita|first=T.|year=2005|title=(NH4)2SO4 family ... K3BiCl6 · 2KCl · KH3F4|chapter=43B-6 (NH4)2Mn2(SO4)3-(NH4)2Mn2(SeO4)3|volume=36B2|pages=1–3|doi=10.1007/10552342_84|isbn=9783540313533|work=Inorganic Substances other than Oxides}}</ref>
|-
|-
|TlMn
|TlMn

Revision as of 22:14, 6 July 2013

Langbeinites are a family of crystalline substances based on the structure of langbeinite with basic formula M2M'2(SO4)3. M is a large univalent cation such as potassium, rubidium, cesium, or ammonium). M' is a small divalent cation for example (magnesium calcium, manganese, iron, cobalt, nickel, copper, zinc or cadmium). The sulfate group SO42- can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate BeF42-, selenate (SeO42-) or chromate (CrO42-).

At higher temperatures the crystal structure is cubic P213.[1] However the crystal; structure may change at lower temperatures, for example P21 P1 P212121.[1] Usually this temperature is well be low room temperature, but in a few cases the substance must be heated to have the cubic structure.

Examples

Sulfates include dithallium dicadmium sulfate,[2] Dirubidium dicadmium sulfate[3] dipotassium dicadmium sulfate,[4] dithallium manganese sulfate.[5] dirubidium dicalcium trisulfate.[6]

Selenates include diammonium dimanganese selenate.[1]

Chromate based langbeinites include dicesium dimanganese chromate.[1]

Molybdates include Rb2Co2(MoO4)3.[1] Potassium members are absent, as are zinc and copper containing solids, which all crystallize in different forms. Manganese, magenesium, cadmium and some nickel double molydates exist as langbeinites.[7]

Double tungstates of the form A2B2(WO4)3 are predicted to exist in the langbeinite form.[8]

Examples with tetrafluroberyllate include dipotassium dimanganese tetrafluoroberyllate K2Mn2(BeF4)3,[4]

Other tetrafluoroberyllates may include Rb2Mg2(BeF4)3 Tl2Mg2(BeF4)3 Tl2Mn2(BeF4)3 Rb2Ni2(BeF4)3 Tl2Ni2(BeF4)3 Rb2Zn2(BeF4)3 Tl2Zn2(BeF4)3 Cs2Ca2(BeF4)3 Rb2Ca2(BeF4)3 RbCsMnCd(BeF4)3 Cs2MnCd(BeF4)3 RbCsCd2(BeF4)3 Cs2Cd2(BeF4)3. Tl2Cd2(BeF4)3 (NH4)2Cd2(BeF4)3 KRbMnCd(BeF4)3 K2MnCd(BeF4)3 Rb2MnCd(BeF4)3 Rb2Cd2(BeF4)3 RbCsCo2(BeF4)3 (NH4)2Co2(BeF4)3 K2Co2(BeF4)3 Rb2Co2(BeF4)3 Tl2Co2(BeF4)3 RbCsMn2(BeF4)3 Cs2Mn2(BeF4)3 RbCsZn2(BeF4)3 (NH4)2Mg2(BeF4)3 (NH4)2Mn2(BeF4)3 (NH4)2Ni2(BeF4)3 (NH4)2Zn2(BeF4)3 KRbMg2(BeF4)3 K2Mg2(BeF4)3. KRbMn2(BeF4)3 K2Mn2(BeF4)3 K2Ni2(BeF4)3 K2Zn2(BeF4)3[9]

The phosphate containing langbeinites were found in 1972 with the discovery of KTi2(PO4)3, and since then a few more phosphates that also contain titanium have been found such as Na2FeTi(PO4), Na2CrTi(PO4)3. By substituting metals in A2MTi(PO4)3, A from K, Rb, Cs, and M from Cr, Fe or V other langbeinites are made. The nasicon-type structure competes for these kind of phosphates, so not all possibilities are langbeinites.[1] Other phosphate based substances include K2YTi(PO4)3 K2ErTi(PO4)3 K2YbTi(PO4)3, K2CrTi(PO4)3[1] K2AlSn(PO4)3[10] Rb2YbTi(PO4)3.[11] Sodium barium diiron tris-(phosphate) NaBaFe2(PO4)3 is yet another variation with the same structure but differently charged ions.[12] Most phosphates of this kind of formula do not form langbeinites, instead crystalise in the nasicon structure with archetype Na3Zr2(PO4)(SiO4)2.[1]

A langbeinite with arsenate is known to exist by way of K2ScSn(AsO4)3.[13]

Properties

Physical properties

Lanbeinite crystals can show ferroelectric or ferroelastic properties.[1] Diammonium dicadmium sulfate identified by Jona and Pepinsky[14] with a unit cell size of 10.35Å becomes ferroelectric when the temperature drops below 95K.[15] The phase transition temperature is not fixed, and can vary depending on the crystal or history of temperature change. So for example the phase transition in diammonium dicadmium sulfate can occur between 89 and 95K.[16] Under pressure the highest phase transition temperature increases. ∂T/∂P = 0.0035 degrees/bar. At 824 bars there is a triple point with yet another transition diverging at a slope of ∂T/∂P = 0.103 degrees/bar.[17]

Dithallium dicadmium sulfate was shown to be ferroelectric in 1972.[18]

Dipotassium dicadmium sulfate is thermoluminescent with stronger outputs of light at 350 and 475K. This light output can be boosted forty times with a trace amount of samarium.[19] Dipotassium dimagnesium sulfate doped with dysprosium develops thermoluminescence and mechanoluminescence after being irradiated with gamma rays.[20] Since gamma rays occur naturally, this radiation induced thermoluminescence can be used to date evaporites in which langbeinite can be a constituent.[21]

At higher temperatures the crystals take on cubic form, whereas at the lowest temperatures they can transform to an orthorhombic crystal group. For some types there are two more phases, and as the crystal is cooled it goes from cubic, to monoclinic, to triclinic to orthorhombic. This change to higher symmetry on cooling is very unusual in solids.[22] For some langbeinites only the cubic form is known, but that may be because it has not been studied at low enough temperatures yet. Those that have three phase transitions go through these crystallographic point groups: P213 - P21 - P1 - P212121, whereas the single phase change crystals only have P213 - P212121.

K2Cd2(SO4)3 has a transition temperature above room temperature, so that it is ferroelectric in standard conditions. The orthorhombic cell size is a=10.2082 Å, b=10.2837 Å, c=10.1661 Å.[23]

Where the crystals change phase there is a discontinuity in the heat capacity. The transitions may show thermal hysteresis.[24]

Different cations can be substituted so that for example K2Cd2(SO4)3 and Tl2Cd2(SO4)3 can form solid solutions for all ratios of thallium and potassium. Properties such as the phase transition temperature and unit cell sizes vary smoothly with the composition.[25]

Langeinites containing transition metals can be coloured. For example cobalt langbeinite shows a broad absorption around 555 nm due to the cobalt 4T1g(F)4T1g(P) electronic transition.[26]

The enthalpy of formation (ΔfHm) for solid (NH4)2Cd2(SO4)3 at 298.2K is -3031.74±0.08 kJ/mol, and for K2Cd2(SO4)3 it is -3305.52±0.17 kJ/mol.[27]

Sulfates

formula weight comment transition density cell size refractive
elements formula g/mol symmetries 1 2 3[28] Å index
KMg K2Mg2(SO4)3 414.99 4 phases 51 54.9 63.8 2.832[29] 9.9211[30] 1.536[31]
RbMg Rb2Mg2(SO4)3 507.73 made 3.367[32] 10.0051[32] 1.556[32]
CsMg Cs2Mg2(SO4)3 602.61 no compound[8]
(NH4)Mg (NH4)2Mg2(SO4)3 372.87 241[33] 220[33]
TlMg Tl2Mg2(SO4)3 745.56 ≥3 phase 227.8[33] 330.8[33]
KCaMg K2CaMg(SO4)3 430.77 made 2.723[34] 10.1662[34] 1.525[34]
KCa K2Ca2(SO4)3 446.54 4 phases 457 2.69 2.683[35] 10.429Å a=10.334 b=10.501 c=10.186 Nα=1.522 Nβ=1.526 Nγ=1.527
RbCa Rb2Ca2(SO4)3 539.28 2 phases 183 3.034[36] 10.5687[36] 1.520[36]
CsCa Cs2Ca2(SO4)3 634.15 3.417[37][38] 10.7213 1.549
TlCa no compound[8]
(NH4)Ca (NH4)2Ca2(SO4)3 404.42 made 158 2.297[39] 10.5360[39] 1.532[39]
NH4V (NH4)2V2(SO4)3 [40][41]
KMn manganolangbeinite[42] K2Mn2(SO4)3 476.26 2 phases
pale pink[43]
191 3.02[30] 10.014[30]
(orthorhombic)
a=10.081, b=10.108, c=10.048 Å[44]
1.576[43]
RbMn[45] Rb2Mn2(SO4)3 569 made 3.546[46] 10.2147[46] 1.590[46]
CsMn Cs2Mn2(SO4)3 663.87 predicted[8]
(NH4)Mn (NH4)2Mn2(SO4)3 434.14 made 10.1908[47]
TlMn Tl2Mn2(SO4)3 806.83 made 5.015[48] 10.2236[48] 1.722[48]
KFe K2Fe2(SO4)3 478.07 made ?130
RbFe predicted[8]
TlFe exists[8]
NH4Fe (NH4)2Fe2(SO4)3[40] 435.95
KCo K2Co2(SO4)3 484.25 2 phases
deep purple
126 3.280[29] 9.9313[30] 1.608[49]
RbCo Rb2Co2(SO4)3 576.99 made 3.807[50] 10.0204[50] 1.602[50]
CsCo 671.87
(NH4)Co (NH4)2Co2(SO4)3 442.13 made
TlCo Tl2Co2(SO4)3 813.82 made 5.361[51] 10.0312 1.775
KNi K2Ni2(SO4)3 483.77 made[52] light greenish yellow[53] 3.369[29] 9.8436[53] 1.620[53]
RbNi Rb2Ni2(SO4)3 576.51 made 3.921[54] 9.9217[54] 1.636[54]
CsNi 671.39 predicted[8]
(NH4)Ni (NH4)2Ni2(SO4)3 441.65 made[52] 160
TlNi Tl2Ni2(SO4)3 814.34 predicted[8]
RbCu predicted[8]
CsCu predict not[8]
TlCu predicted[8]
KZn K2Zn2(SO4)3 497.1 4 phases 75 138 3.376[29] 9.9247[55] 1.592[55]
RbZn predicted[8]
CsZn predict not[8]
TlZn predicted[8]
KCd K2Cd2(SO4)3 591.21 2 phases 432 2.615 3.677[56] a=10.212 b=10.280 c=10.171 Nα=1.588 Nγ=1.592
RbCd Rb2Cd2(SO4)3 683.95 4 phases 66 103 129 4.060[30][57] 10.3810[30][57] 1.590[57]
(NH4)Cd (NH4)2Cd2(SO4)3 549.09 4 phases 95 3.288[30] 10.3511[30]
TlCd Tl2Cd2(SO4)3 921.78 4 phases 92 120 132 5.467[30] 10.3841[30] 1.730[54]

Fluoroberyllates

comment transition cell size refractive
elements formula symmetries 1 2 3 density Å index
KMnBe K2Mn2(BeF4)3 4 phases 213[4]

Phosphates

substance formula weight unit cell edge Å density
K2YTi(PO4)3[1] 578.25 10.1053 3.192
K2ErTi(PO4)3[1] 584.03 10.094 3.722
K2YbTi(PO4)3[1] 499.89 10.1318 3.772
K2CrTi(PO4)3[1] 462.98 9.8001 3.267
(NH4)(H3O)TiIIITiIV(PO4)3[58] 417.71
K2AlSn(PO4)3 508.78 9.798[10]
K2YHf(PO4)3[59] 630.51 10.3075 3.824
Li(H2O)2Hf2(PO4)3[60] 684.87 10.1993
Li(H2O)2Zr2(PO4)3[61] 510.33 10.2417
Li2Zr2(PO4)3[61] 481.24
K2(Ce,...,Lu)Zr(PO4)3[62] 594.45...629.3 10.29668
Rb2FeZr(PO4)3[63] 602.92 10.1199
K4(Al,Cr,Fe)3(NbTa)1(PO4)6 ?[64]
K2AlTi(PO4)3[65] 437.96 9.7641
KBaEr2(PO4)3[66] 795.857
RbBaEr2(PO4)3[66] 842.227
CsBaEr2(PO4)3[66] 889.665
(Rb,Cs)2(Pr,Er)Zr(PO4)3[66]

Molybdates

substance formula weight unit cell edge Å density
Cs2Cd2(MoO4)3[67] 970.5 11.239
Rb2Co2(MoO4)3 768.7

Preparation

Diammonium dicadmium sulfate can be made by evaporating a solution of ammonium sulfate and cadmium sulfate.[16] Dithallium dicadmium sulfate can be made by evaporating a water solution at 85°C[18] Othere substances may be formed during crystalisation from water such as Tutton's salts or competing compounds like Rb2Cd3(SO4)4·5H2O.[68]

Potassium and ammonium nickel langbeinite can be made from nickel sulfate and the other sulfates by evaporating a water solution at 85°C.[52]

Dipotassium dizinc sulfate can be formed into large crystals by melting zinc sulfate and potassium sulfate together at 753K. A crystal can be slowly drawn out of the melt from a rotating crucible at about 1.2 mm every hour.[44]

Li(H2O)2Hf2(PO4)3 can be made by heating HfCl4, Li2B4O7, H3PO4, water and hydrochloric acid to 180°C for eight days under pressure.[60] Li(H2O)2Hf2(PO4)3 converts to Li2Hf2(PO4)3 on heating to 200°C.[61]

The sol-gel method produces a gel from a solution mixture, which is then heated. Rb2FeZr(PO4)3 can be made by mixing solutions of FeCl3, RbCl, ZrOCl2, and dripping in H3PO4. The gel produced was dried out at 95° and then baked at various temperatures from 400° to 1100°C.[63]

The Bridgman technique

The flux technique

A Tutton's salt may be heat treated and dehydrate, eg (NH4)2Mn2(SeO4)3 can be made from (NH4)2Mn(SeO4)3.6(H2O) heated to 100°C, forming (NH4)2(SeO4) as a side product.[69]

Use

Few uses have been made of these substances. Lanbeinite itself can be used as an "organic" fertiliser with potassium, magnesium and sulfur, all needed for plant growth. Electrooptic devices could be made from some of these crystals, particularly those that have cubic transition temperatures as temperatures above room temperature. Research continues into this. Ferroelectric crystals could store information in the location of domain walls.

The phosphate langbeinites are insoluble, stable against heat, and can accommodate a large number of different ions, and have been considered for immobilizing unwanted radioactive waste.[64]

References

  1. ^ a b c d e f g h i j k l m Norberg, Stefan T. (2002). "New phosphate langbeinites, K2MTi(PO4)3 (M = Er, Yb or Y), and an alternative description of the langbeinite framework". Acta Crystallographica B. 58 (5): 743–749. doi:10.1107/S0108270104030525. PMID 12324686.
  2. ^ Guelylah, A. (2000). "X-ray structure determination of the monoclinic (121 K) and orthorhombic (85 K) phases of langbeinite-type dithallium dicadmium sulfate". Acta Crystallographica Section B Structural Science. 56 (6): 921–935. doi:10.1107/S0108768100009514. ISSN 0108-7681. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ Guelylah, Abderrahim (2003). "Dirubidium dicadmium sulfate at 293 K". Acta Crystallographica Section C Crystal Structure Communications. 59 (5): i32–i34. doi:10.1107/S0108270103007479. ISSN 0108-2701. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ a b c Guelylah, A. (1996). "Microscopic distortion and order parameter in langbeinite K2Cd2(SO4)3". Phase Transitions. 59 (1–3): 155–179. doi:10.1080/01411599608220042. ISSN 0141-1594. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help) Cite error: The named reference "Guelylah1996" was defined multiple times with different content (see the help page).
  5. ^ Zemann, Anna (1957). "Die Kristallstruktur von Langbeinit, K2Mg2(SO4)3". Acta Crystallographica. 10 (6): 409–413. doi:10.1107/S0365110X57001346. ISSN 0365-110X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  6. ^ Boujelben, Mohamed (2007). "Langbeinite-type Rb2Ca2(SO4)3". Acta Crystallographica Section E Structure Reports Online. 63 (7): i157–i157. doi:10.1107/S1600536807027043. ISSN 1600-5368. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ Солодовникова, С.Ф. (1997). "Новый тип строения в морфотропном ряду A[2]{+}M[2]{2+}(MoO[4])[3]:кристаллическая структура Rb[2]Cu[2](MoO[4])[3]". ЖУРНАЛ структур. химии (in Russian). 38 (5): 914–921. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  8. ^ a b c d e f g h i j k l m n Kiselyova, Nadezhda (September 1997). "Property Predictions for Multicomponent Compounds". Russian Academy of Sciences. Retrieved 6 July 2013.
  9. ^ Pies, W. (1973). "a458, I.1.3 Complex fluorides and fluorine double salts". 7a: 91–103. doi:10.1007/10201462_9. {{cite journal}}: Cite journal requires |journal= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  10. ^ a b Li, Hai-Yan (2011). "A new langbeinite-type phosphate: K2AlSn(PO4)3". Acta Crystallographica Section E Structure Reports Online. 67 (10): i56–i56. doi:10.1107/S1600536811037263. ISSN 1600-5368. PMID 22058680. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  11. ^ Gustafsson, Joacim C. M. (2006). "The langbeinite type Rb2TiY(PO4)3". Acta Crystallographica Section E Structure Reports Online. 62 (7): i160–i162. doi:10.1107/S1600536806021635. ISSN 1600-5368. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  12. ^ Hidouri, Mourad (2008). "The iron phosphate NaBaFe2(PO4)3". Acta Crystallographica Section E Structure Reports Online. 64 (8): i51–i51. doi:10.1107/S1600536808023040. ISSN 1600-5368. PMID 21202994. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  13. ^ Harrison, William T. A. (2010). "K2ScSn(AsO4)3: an arsenate-containing langbeinite". Acta Crystallographica Section C Crystal Structure Communications. 66 (7): i82–i84. doi:10.1107/S0108270110021670. ISSN 0108-2701.
  14. ^ Jona, F. (1956). "Ferroelectricity in the Langbeinite System". Physical Review. 103 (4): 1126–1126. doi:10.1103/PhysRev.103.1126. ISSN 0031-899X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  15. ^ McDowell, C.A. (1975). "Proton N.M.R. study of the dynamics of the ammonium ion in ferroelectric langbeinite, (NH4)2Cd2(SO4)3". Molecular Physics. 29 (3): 815–824. doi:10.1080/00268977500100721. ISSN 0026-8976. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  16. ^ a b Moriyoshi, C. (28 March 2007). "Structural Study of Langbeinite-type (NH4)2Cd(SO4)3) Crystal in the High Temperature Phase" (PDF). IMF-11. Retrieved 24 June 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  17. ^ Glogarová, M. (1972). "The Behaviour of (NH4)2Cd2(SO4)3 under Pressure". Physica Status Solidi (b). 53 (1): 369–372. doi:10.1002/pssb.2220530139. ISSN 0370-1972. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  18. ^ a b B̌rzina, B. (1972). "New ferroelectric langbeinite Tl2Cd2(SO4)3". Physica Status Solidi (a). 11 (1): K39–K42. doi:10.1002/pssa.2210110149. ISSN 0031-8965. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  19. ^ Deshmukh, B. T. (1986). "Thermoluminescence of K2Cd2(SO4)3". physica status solidi (a). 98 (1): 239–246. doi:10.1002/pssa.2210980127. ISSN 0031-8965. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  20. ^ Panigrahi, A. K. (2003). "Thermo and mechanoluminescence of Dy3+ activated K2Mg2(SO4)3 phosphor". physica status solidi (a). 198 (2): 322–328. doi:10.1002/pssa.200306605. ISSN 0031-8965. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  21. ^ Léost, I. (2001). "First absolute dating of Miocene Langbeinite evaporites by40Ar/39Ar laser step-heating: [K2Mg2(SO4)3] Stebnyk Mine (Carpathian Foredeep Basin)". Geophysical Research Letters. 28 (23): 4347–4350. doi:10.1029/2001GL013477. ISSN 0094-8276. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  22. ^ Franke, V. (1975). "Specific heat measurement on Tl2 Cd2 (SO4)3". Physica Status Solidi (a). 28 (1): K77–K80. doi:10.1002/pssa.2210280165. ISSN 0031-8965. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  23. ^ Abrahams, S. C. (1977). "Piezoelectric langbeinite-type K2Cd2(SO4)3: Room temperature crystal structure and ferroelastic transformation". The Journal of Chemical Physics. 67 (5): 2146. doi:10.1063/1.435101. ISSN 0021-9606. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  24. ^ Cao, Hongjie (1993). "Calorimetric and structural studies of langbeinite-type Tl2Cd2(SO4)3". Ferroelectrics. 146 (1): 45–56. doi:10.1080/00150199308008525. ISSN 0015-0193. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  25. ^ Sutera, A. (1981). "Phase-transition variation with composition in solid solutions of K2Cd2(SO4)3with Tl2Cd2(SO4)3". Journal of Applied Crystallography. 14 (5): 297–299. doi:10.1107/S0021889881009412. ISSN 0021-8898. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  26. ^ Percival, M. J. L. (1990). "Optical Absorption Spectroscopy of Doped Materials: The P213-P212121 Phase Transition in K2(Cd0.98Co0.02)2(SO4)3". Mineralogical Magazine. 54 (377): 525–535. doi:10.1180/minmag.1990.054.377.01. ISSN 0026-461X.
  27. ^ Zhou, Ya-Ping (March 2001). "Thermochemical Studies on the LangbeiniteType Double Sulfate Salts,(NH4)2Cd2(SO4)3 and K2Cd2(SO4)3". Acta Physic0-Chimica Sinica (in Chinese). 17 (3): 247. doi:10.3866/PKU.WHXB20010312. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  28. ^ Boerio-Goates, Juliana (1990). "Heat capacity studies of phase transitions in langbeinites II. K2Mg2(SO4)3". Physics and Chemistry of Minerals. 17 (2). doi:10.1007/BF00199670. ISSN 0342-1791. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  29. ^ a b c d Speer, D. (1986). "Phase transitions in langbeinites I: Crystal chemistry and structures of K-double sulfates of the langbeinite type M 2 + + K2(SO4)3, M + +=Mg, Ni, Co, Zn, Ca". Physics and Chemistry of Minerals. 13 (1): 17–24. doi:10.1007/BF00307309. ISSN 0342-1791. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  30. ^ a b c d e f g h i j Burkov, V. I. (2001). "Gyrotropy of Cubic Langbeinite Crystals". Inorganic Materials. 37 (3): 203–212. doi:10.1023/A:1004165926149. ISSN 0020-1685. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  31. ^ Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 40. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  32. ^ a b c Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 50. Retrieved July 4, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  33. ^ a b c d Kahrizi, Mojtaba (1988). "Phase transitions and thermal expansion in langbeinite type compounds". Solid State Communications. 66 (4): 375–378. doi:10.1016/0038-1098(88)90860-5. ISSN 0038-1098. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  34. ^ a b c Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 37. Retrieved July 4, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  35. ^ Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 39. Retrieved July 4, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  36. ^ a b c Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 48. Retrieved June 17, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  37. ^ Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 12. Retrieved June 17, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  38. ^ Gattow, G. (1958). "Über Doppelsulfate vom Langbeinit-Typ, A2+B22+ (SO4)3". Zeitschrift für anorganische und allgemeine Chemie. 293 (5–6): 233–240. doi:10.1002/zaac.19582930502. ISSN 0044-2313. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  39. ^ a b c Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 7. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  40. ^ a b "Les sulfates doubles de vanadium et d'ammonium. I. Sur la schoenite de vanadium II et ammonium". Bulletin de la Société Chimique de France : Partie 1 (7/8): 653-655. 1977. {{cite journal}}: Cite uses deprecated parameter |authors= (help); Unknown parameter |jabbre= ignored (help)
  41. ^ http://crystdb.nims.go.jp/crystdb/search-list?search=Search+materials&condition_type=chemical_system&need_more_value=&need_more_type=prototype_number&condition_value=N+H+S+V+O&isVisiblePeriodicTable=false&substance_id=20195&search-type=search-materials
  42. ^ Bellanca, A. (1947). Sulla simmetria della manganolangbeinite/ Atti Accad. Nazi. Lincei Rend. Classe Sci. Fis. Mat. Nat. 2, 451-455.
  43. ^ a b Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 43. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  44. ^ a b Yamada, Noboru (1981). "Structures of langbeinite-type dipotassium dimanganese sulfate in cubic and orthorhombic phases". Journal of the Physical Society of Japan. 50 (3). JUPSAU: 907–913. ISSN 0031-9015. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help) Cite error: The named reference "Yamada1981" was defined multiple times with different content (see the help page).
  45. ^ Swain, Diptikanta (2006). "Rb2Mn2(SO4)3, a new member of the langbeinite family". Acta Crystallographica Section E Structure Reports Online. 62 (6): m138–m139. doi:10.1107/S1600536806019490. ISSN 1600-5368. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  46. ^ a b c Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 52. Retrieved June 17, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  47. ^ Hikita, T. (2005). "(NH4)2SO4 family ... K3BiCl6 · 2KCl · KH3F4". Inorganic Substances other than Oxides. 36B2: 1–3. doi:10.1007/10552342_84. ISBN 9783540313533. {{cite journal}}: |chapter= ignored (help)
  48. ^ a b c Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 76. Retrieved July 4, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  49. ^ Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 35. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  50. ^ a b c Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 59. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  51. ^ Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 85. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  52. ^ a b c Jayakumar, V. S. (1995). "IR and single crystal Raman spectra of langbeinities M2 Ni2(SO4)3 (M = NH4, K)". Ferroelectrics. 165 (1): 307–318. doi:10.1080/00150199508228311. ISSN 0015-0193. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  53. ^ a b c Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 46. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  54. ^ a b c d Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 72. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  55. ^ a b Swanson, H. E. (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 54. Retrieved 5 July 2013. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  56. ^ Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 34. Retrieved July 4, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  57. ^ a b c Swanson,, H. E. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 45. Retrieved July 4, 2013. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  58. ^ Fu, Yun-Long (2005). "Langbeinite-type mixed-valence (NH4)(H3O)TiIIITiIV(PO4)3". Acta Crystallographica Section E Structure Reports Online. 61 (8): i158–i159. doi:10.1107/S1600536805021392. ISSN 1600-5368. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  59. ^ Ogorodnyk, Ivan V. (2009). "Rietveld refinement of langbeinite-type K2YHf(PO4)3". Acta Crystallographica Section E Structure Reports Online. 65 (8): i63–i64. doi:10.1107/S1600536809027573. ISSN 1600-5368. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  60. ^ a b Chen, Shuang (2011). "Crystal structure of a lithium-filled langbeinite variant, Li(H2O)2[Hf2(PO4)3]". Z. Kristallogr. 226. München: NCS: 299–300. doi:10.1524/ncrs.2011.0132. Retrieved 30 June 2013. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  61. ^ a b c Chen, Shuang (2011). "Li(H2O)2-x[Zr2(PO4)3]: A Li-Filled Langbeinite Variant (x= 0) as a Precursor for a Metastable Dehydrated Phase (x= 2)". Chemistry of Materials. 23 (6): 1601–1606. doi:10.1021/cm103487w. ISSN 0897-4756. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  62. ^ Ogorodnyk, I. V. (2007). "Synthesis and crystal structure of langbeinite related mixed-metal phosphates K1.822Nd0.822Zr1.178(PO4)3 and K2LuZr(PO4)3". Crystal Research and Technology. 42 (11): 1076–1081. doi:10.1002/crat.200710961. ISSN 0232-1300. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  63. ^ a b Trubach, I. G. (2004). "Synthesis and structural study of Rb2FeZr(PO4)3 phosphate with langbeinite structure". Crystallography Reports. 49 (6): 895–898. doi:10.1134/1.1828132. ISSN 1063-7745. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  64. ^ a b Orlova, A. I. (2006). "Crystallochemical modeling, synthesis, and study of new tantalum and niobium phosphates with a framework structure". Crystallography Reports. 51 (3): 357–365. doi:10.1134/S1063774506030011. ISSN 1063-7745. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help) Cite error: The named reference "Orlova2006" was defined multiple times with different content (see the help page).
  65. ^ Zhao, Dan (2009). "Crystal and band structure of K2AlTi(PO4)3 with the langbeinite-type structure". Journal of Alloys and Compounds. 477 (1–2): 795–799. doi:10.1016/j.jallcom.2008.10.124. ISSN 0925-8388. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  66. ^ a b c d Orlova, A. I. (2005). "Anhydrous Lanthanide and Actinide(III) and (IV) Orthophosphates Mem(PO4)n. Synthesis, Crystallization, Structure, and Properties". Radiochemistry. 47 (1): 14–30. doi:10.1007/s11137-005-0041-6. ISSN 1066-3622. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  67. ^ Tsyrenova, G. D. (2011). "Synthesis, structure, and electrical and acoustic properties of Cs2Cd2(MoO4)3". Inorganic Materials. 47 (7): 786–790. doi:10.1134/S0020168511070235. ISSN 0020-1685. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  68. ^ Swain, Diptikanta (2005). "Dirubidium tricadmium tetrakis(sulfate) pentahydrate". Acta Crystallographica Section E Structure Reports Online. 61 (8): i163–i164. doi:10.1107/S1600536805021252. ISSN 1600-5368. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  69. ^ Kohler, K. (1964). "(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur". Acta Crystallographica. 17 (8): 1088–1089. doi:10.1107/S0365110X64002833. ISSN 0365-110X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)