Jump to content

Endocannabinoid transporter: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Anaffen21 (talk | contribs)
added inline citations, added links, made minor changes to the text for clarification, removed {{technical}}, added {{molecular-cell-biology-stub}}
Line 1: Line 1:
{{molecular-cell-biology-stub}}
{{technical|date=October 2013}}
Most neurotransmitters are water-soluble and require transmembrane proteins to transport them across the cell membrane. The endocannabinoids (anandamide, AEA, and 2-arachidonoyl glycerol, 2-AG) on the other hand, are non-charged lipids that readily cross lipid membranes[1-5]. However, since the endocannabinoids are water immiscible, protein transporters have been described that act as carriers to solubilize and transport the endocannabinoids through the aqueous cytoplasm. These include the heat shock proteins (Hsp70s) and fatty acid binding proteins for anandamide ( FABPs) [6, 7]. FABP inhibitors prevent attenuate the breakdown of anandamide by the fatty acid amide hydrolase (FAAH) in cell culture[6]. One of these inhibitors, isolated from a virtual library of a million compounds, belongs to a class of compounds (named the "truxilloids') that act as a potent anti-nociceptive agent with mild anti-inflammatory activity in mice[8]. These truxillic acids and their derivatives have been known to have anti-inflammatory and anti-nociceptive effects in mice[9] and are active component of a Chinese herbal medicine (Incarvillea sinensis) used to treat rheumatism and pain in human. Presumably, the FABP transporters for anandamide[8] is the mechanism by which these compounds act.
Most [[Neurotransmitter|neurotransmitters]] are water-soluble and require [[Transmembrane protein|transmembrane proteins]] to transport them across the [[cell membrane]]. The [[Cannabinoid#Endocannabinoids|endocannabinoids]] ([[anandamide]], AEA, and [[2-arachidonoylglycerol]], 2-AG) on the other hand, are non-charged lipids that readily cross lipid membranes<ref name = "acscn2012">{{cite journal | title=Anandamide Externally Added to Lipid Vesicles Containing-Trapped Fatty Acid Amide Hydrolase (FAAH) Is Readily Hydrolyzed in a Sterol-Modulated Fashion |year=2012 |journal=ACS Chemical Neuroscience |volume=3 |issue=5 |pages=364-368. |last1=Kaczocha |first1=Martin |last2=Lin |first2=Qingqing |last3=Nelson | first3=Lindsay D. |last4=McKinney |first4=Michelle K. |last5=Cravatt | first5=Benjamin F. |last6=London |first6=Erwin |last7=Deutsch |first7= Deutsch |doi=10.1021/cn300001w}}</ref><ref name = "jlr2005">{{cite journal | title=Membrane transport of anandamide through resealed human red blood cell membranes |year=2005 |journal=The Journal of Lipid Research|volume=46 no.| issue=8 |pages=1652-1659|last1=Bojesen |first1=Inge N. |last2=Hansen | first2=Harald S. |doi=10.1194/jlr.M400498-JLR200}}</ref><ref name = "jbc2006"> {{cite journal |title=Anandamide Uptake Is Consistent with Rate-limited Diffusion and Is Regulated by the Degree of Its Hydrolysis by Fatty Acid Amide Hydrolase |year=2006 |journal= The Journal of Biological Chemistry|volume=281 | issue=14 |pages=9066-9075 |last1=Kaczocha |first1=Martin |last2=Hermann | first2=Anita |last3=Glaser |first3=Sherrye T. |last4=Bojesen |first4=Inge N. | last5=Deutsch |first5=Dale G. |doi=10.1074/jbc.M509721200}}</ref><ref name = "cpl2005">{{cite journal |title=Measurement of saturable and non-saturable components of anandamide uptake into P19 embryonic carcinoma cells in the presence of fatty acid-free bovine serum albumin. |year=2005 |journal=Chemistry and Physics of Lipids |volume=134 |issue=2 |pages=131-139 |last1=Sandberg | first1=A. |last2=Fowler |first2=C.J. |pmid=15784231}}</ref><ref name = "po2009">{{cite journal |title=The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent |trans_title=Translated title |year=2009 |journal=PLoS ONE |volume=4 |issue=3 |pages=e4989 |last1=Di Pasquale |first1=E. |last2=Chahinian |first2=H. |last3=Sanchez |first3=P. | last4=Fantini |first4=J. |doi=10.1371/journal.pone.0004989}}</ref>. However, since the endocannabinoids are water [[Miscibility|immiscible]], [[Transport protein|protein transporters]] have been described that act as carriers to [[Solubility|solubilize]] and transport the endocannabinoids through the aqueous [[cytoplasm]]. These include the [[Heat shock protein|heat shock proteins]] ([[Hsp70|Hsp70s]]) and [[Fatty acid-binding protein|fatty acid binding proteins]] for anandamide (FABPs)<ref name = "pnasus2009">{{cite journal |title=Identification of intracellular carriers for the endocannabinoid anandamide |year=2009 |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=106 | issue=15 |pages=6375-6380 |last1=Kaczocha |first1=M. |last2=Glaser |first2=S.T. |last3=Deutsch |first3=D.G. |pmid=19307565 |doi=10.1073/pnas.0901515106}} </ref><ref name = "cb2009">{{cite journal |title=Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins |year=2009 | journal=Chemistry & Biology |volume=16 |issue=6 |pages=624-632 |last1=Oddi | first1=S. |last2=Fezza |first2=F. |last3=Pasquariello |first3=N. | last4=D'Agostino |first4=A. |last5=Catanzaro |first5=G. |last6=De Simone | first6=C. |last7=Rapino |first7=C. |last8=Finazzi-Agro |first8=A. | last9=Maccarrone |first9=M. |pmid=19481477 | doi=10.1016/j.chembiol.2009.05.004}}</ref>. FABP inhibitors prevent attenuate the breakdown of anandamide by the [[enzyme]] [[fatty acid amide hydrolase]] (FAAH) in cell culture<ref name = "pnasus2009"></ref>. One of these inhibitors, isolated from a virtual library of a million compounds, belongs to a class of compounds (named the "truxilloids') that act as a potent [[Nociception|anti-nociceptive]] agent with mild [[Inflammation|anti-inflammatory]] activity in mice<ref name = "po2012">{{cite journal |title=Targeting Fatty Acid Binding Protein (FABP) Anandamide Transporters – A Novel Strategy for Development of Anti-Inflammatory and Anti-Nociceptive Drugs |year=2012 |journal=PLoS ONE |volume=12 |issue=7 |pages=e50968 |last1=Berger |first1=W.T. |last2=Ralph |first2=B.P. |last3=Kaczocha |first3=M. |last4=Sun |first4=J. | last5=Balius |first5=T.E. |last6=Rizzo |first6=R.C. |last7=Haj-Dahmane |first7=S. |last8=Ojima |first8=I. |last9=Deutsch |first9=D.G. |doi=10.1371/journal.pone.0050968}}</ref>. These [[Truxillic acid|truxillic acids]] and their derivatives have been known to have anti-inflammatory and anti-nociceptive effects in mice<ref name = "jnp1999">{{cite journal |title=Strong antinociceptive effect of incarvillateine, a novel monoterpene alkaloid from Incarvillea sinensis |year=1999 |journal=Journal of Natural Products |volume=62 |issue=9 |pages=1293-1294 |last1=Nakamura |first1=M. |last2=Chi |first2=Y.M. |last3=Yan |first3=W.M. |last4=Nakasugi |first4=Y. | last5=Yoshizawa |first5=T. |last6=Irino |first6=N. |last7=Hashimoto |first7=F. |last8=Kinjo |first8=J. |last9=Nahara |first9=T. |last10=Sakurada |first10=S. |pmid=10514316}}</ref> and are active component of a Chinese herbal medicine ([[Incarvillea]] sinensis) used to treat [[rheumatism]] and pain in human. Presumably, the FABP transporters for anandamide<ref name = "po2012"></ref> is the mechanism by which these compounds act.

<br>
<br>
== References ==
== References ==
* Kaczocha, M., Q. Lin, L.D. Nelson, M.K. McKinney, B.F. Cravatt, E. London, and D.G. Deutsch, Anandamide externally added to lipid vesicles containing-trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion. ACS chemical neuroscience, 2012. 3(5): p. 364-8.

* Bojesen, I.N. and H.S. Hansen, Membrane transport of anandamide through resealed human red blood cell membranes. Journal of lipid research, 2005. 46(8): p. 1652-9.

* Kaczocha, M., A. Hermann, S.T. Glaser, I.N. Bojesen, and D.G. Deutsch, Anandamide uptake is consistent with rate-limited diffusion and is regulated by the degree of its hydrolysis by fatty acid amide hydrolase. The Journal of biological chemistry, 2006. 281(14): p. 9066-75.

* Sandberg, A. and C.J. Fowler, Measurement of saturable and non-saturable components of anandamide uptake into P19 embryonic carcinoma cells in the presence of fatty acid-free bovine serum albumin. Chemistry and physics of lipids, 2005. 134(2): p. 131-9.
* Di Pasquale, E., H. Chahinian, P. Sanchez, and J. Fantini, The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent. PloS one, 2009. 4(3): p. e4989.

* Kaczocha, M., S.T. Glaser, and D.G. Deutsch, Identification of intracellular carriers for the endocannabinoid anandamide. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(15): p. 6375-80.

* Oddi, S., F. Fezza, N. Pasquariello, A. D'Agostino, G. Catanzaro, C. De Simone, C. Rapino, A. Finazzi-Agro, and M. Maccarrone, Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins. Chemistry & biology, 2009. 16(6): p. 624-32.

* Berger, W.T., B.P. Ralph, M. Kaczocha, J. Sun, T.E. Balius, R.C. Rizzo, S. Haj-Dahmane, I. Ojima, and D.G. Deutsch, Targeting fatty acid binding protein (FABP) anandamide transporters - a novel strategy for development of anti-inflammatory and anti-nociceptive drugs. PloS one, 2012. 7(12): p. e50968.


{{reflist}}
* Nakamura, M., Y.M. Chi, W.M. Yan, Y. Nakasugi, T. Yoshizawa, N. Irino, F. Hashimoto, J. Kinjo, T. Nahara, and S. Sakurada, Strong Antinociceptive Effect of Incarvillateine, a Novel Monoterpene Alkaloid from Incarvillea sinensis. J. Nat. Prod., 1999. 62: p. 1293 - 1294.

Revision as of 22:39, 15 October 2013

Most neurotransmitters are water-soluble and require transmembrane proteins to transport them across the cell membrane. The endocannabinoids (anandamide, AEA, and 2-arachidonoylglycerol, 2-AG) on the other hand, are non-charged lipids that readily cross lipid membranes[1][2][3][4][5]. However, since the endocannabinoids are water immiscible, protein transporters have been described that act as carriers to solubilize and transport the endocannabinoids through the aqueous cytoplasm. These include the heat shock proteins (Hsp70s) and fatty acid binding proteins for anandamide (FABPs)[6][7]. FABP inhibitors prevent attenuate the breakdown of anandamide by the enzyme fatty acid amide hydrolase (FAAH) in cell culture[6]. One of these inhibitors, isolated from a virtual library of a million compounds, belongs to a class of compounds (named the "truxilloids') that act as a potent anti-nociceptive agent with mild anti-inflammatory activity in mice[8]. These truxillic acids and their derivatives have been known to have anti-inflammatory and anti-nociceptive effects in mice[9] and are active component of a Chinese herbal medicine (Incarvillea sinensis) used to treat rheumatism and pain in human. Presumably, the FABP transporters for anandamide[8] is the mechanism by which these compounds act.

References

  1. ^ Kaczocha, Martin; Lin, Qingqing; Nelson, Lindsay D.; McKinney, Michelle K.; Cravatt, Benjamin F.; London, Erwin; Deutsch, Deutsch (2012). "Anandamide Externally Added to Lipid Vesicles Containing-Trapped Fatty Acid Amide Hydrolase (FAAH) Is Readily Hydrolyzed in a Sterol-Modulated Fashion". ACS Chemical Neuroscience. 3 (5): 364-368. doi:10.1021/cn300001w.
  2. ^ Bojesen, Inge N.; Hansen, Harald S. (2005). "Membrane transport of anandamide through resealed human red blood cell membranes". The Journal of Lipid Research. 46 no. (8): 1652–1659. doi:10.1194/jlr.M400498-JLR200.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Kaczocha, Martin; Hermann, Anita; Glaser, Sherrye T.; Bojesen, Inge N.; Deutsch, Dale G. (2006). "Anandamide Uptake Is Consistent with Rate-limited Diffusion and Is Regulated by the Degree of Its Hydrolysis by Fatty Acid Amide Hydrolase". The Journal of Biological Chemistry. 281 (14): 9066–9075. doi:10.1074/jbc.M509721200.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ Sandberg, A.; Fowler, C.J. (2005). "Measurement of saturable and non-saturable components of anandamide uptake into P19 embryonic carcinoma cells in the presence of fatty acid-free bovine serum albumin". Chemistry and Physics of Lipids. 134 (2): 131–139. PMID 15784231.
  5. ^ Di Pasquale, E.; Chahinian, H.; Sanchez, P.; Fantini, J. (2009). "The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent". PLoS ONE. 4 (3): e4989. doi:10.1371/journal.pone.0004989. {{cite journal}}: Unknown parameter |trans_title= ignored (|trans-title= suggested) (help)CS1 maint: unflagged free DOI (link)
  6. ^ a b Kaczocha, M.; Glaser, S.T.; Deutsch, D.G. (2009). "Identification of intracellular carriers for the endocannabinoid anandamide". Proceedings of the National Academy of Sciences of the United States of America. 106 (15): 6375–6380. doi:10.1073/pnas.0901515106. PMID 19307565.
  7. ^ Oddi, S.; Fezza, F.; Pasquariello, N.; D'Agostino, A.; Catanzaro, G.; De Simone, C.; Rapino, C.; Finazzi-Agro, A.; Maccarrone, M. (2009). "Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins". Chemistry & Biology. 16 (6): 624–632. doi:10.1016/j.chembiol.2009.05.004. PMID 19481477.
  8. ^ a b Berger, W.T.; Ralph, B.P.; Kaczocha, M.; Sun, J.; Balius, T.E.; Rizzo, R.C.; Haj-Dahmane, S.; Ojima, I.; Deutsch, D.G. (2012). "Targeting Fatty Acid Binding Protein (FABP) Anandamide Transporters – A Novel Strategy for Development of Anti-Inflammatory and Anti-Nociceptive Drugs". PLoS ONE. 12 (7): e50968. doi:10.1371/journal.pone.0050968.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ Nakamura, M.; Chi, Y.M.; Yan, W.M.; Nakasugi, Y.; Yoshizawa, T.; Irino, N.; Hashimoto, F.; Kinjo, J.; Nahara, T.; Sakurada, S. (1999). "Strong antinociceptive effect of incarvillateine, a novel monoterpene alkaloid from Incarvillea sinensis". Journal of Natural Products. 62 (9): 1293–1294. PMID 10514316.