Lipase inhibitors: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
AnomieBOT (talk | contribs)
m Dating maintenance tags: {{Clarification needed}}
Edit
Line 2: Line 2:


'''Lipase inhibitors''' are substances used to reduce the activity of [[lipase]]s found in the [[intestine]]. Lipases are secreted by the [[pancreas]] when fat is present. The primary role of lipase inhibitors is to decrease the gastrointestinal absorption of fats. Fats then tend to be excreted in feces rather than being absorbed to be used as a source of caloric energy, and this can result in [[weight loss]] in individuals.<ref name=A>{{cite web|last=Aronne|first=Louis|title=Treating Obesity:Drug Treatment for Obesity|url=http://www.medscape.com.login.ezproxy.library.ualberta.ca/viewarticle/407755_7|work=Treating Obesity|publisher=Medscape News|accessdate=March 22, 2012}}</ref> These inhibitors could be used for the treatment of [[obesity]], which can subsequently lead to [[Type II diabetes]] and [[cardiovascular disease]]s if not managed. An example of a lipase inhibitor is [[orlistat]].<ref name=B>{{cite journal|last=Franson|first=K.|author2=Rossner |title=Fat intake and food choices during weight reduction with diet, behavioural modification and a lipase inhibitor|journal=Journal of Internal Medicine|year=2000|volume=247|issue=5|pages=607–614|url=http://ehis.ebscohost.com.login.ezproxy.library.ualberta.ca/eds/pdfviewer/pdfviewer?sid=2240cea9-9618-445e-af62-c3f20fb34891%40sessionmgr111&vid=8&hid=109|accessdate=March 19, 2012|doi=10.1046/j.1365-2796.2000.t01-1-00666.x}}</ref>
'''Lipase inhibitors''' are substances used to reduce the activity of [[lipase]]s found in the [[intestine]]. Lipases are secreted by the [[pancreas]] when fat is present. The primary role of lipase inhibitors is to decrease the gastrointestinal absorption of fats. Fats then tend to be excreted in feces rather than being absorbed to be used as a source of caloric energy, and this can result in [[weight loss]] in individuals.<ref name=A>{{cite web|last=Aronne|first=Louis|title=Treating Obesity:Drug Treatment for Obesity|url=http://www.medscape.com.login.ezproxy.library.ualberta.ca/viewarticle/407755_7|work=Treating Obesity|publisher=Medscape News|accessdate=March 22, 2012}}</ref> These inhibitors could be used for the treatment of [[obesity]], which can subsequently lead to [[Type II diabetes]] and [[cardiovascular disease]]s if not managed. An example of a lipase inhibitor is [[orlistat]].<ref name=B>{{cite journal|last=Franson|first=K.|author2=Rossner |title=Fat intake and food choices during weight reduction with diet, behavioural modification and a lipase inhibitor|journal=Journal of Internal Medicine|year=2000|volume=247|issue=5|pages=607–614|url=http://ehis.ebscohost.com.login.ezproxy.library.ualberta.ca/eds/pdfviewer/pdfviewer?sid=2240cea9-9618-445e-af62-c3f20fb34891%40sessionmgr111&vid=8&hid=109|accessdate=March 19, 2012|doi=10.1046/j.1365-2796.2000.t01-1-00666.x}}</ref>

Lipase inhibitors can be found naturally in plants and can be clinically modified to drugs. Some include [[Ginseng|Panax]] japonicas (Japanese Ginseng) and Platycodi radix{{Clarification needed|Is the meaning here to a species of "[[Platycodon grandiflorus]]?|date=November 2014}}. These plants include phytochemicals such as [[saponin]]s, [[polyphenol]]s, [[flavonoid]]s, and [[caffeine]].<ref name=D />


==Mechanism==
==Mechanism==


Lipase inhibitors may affect the amount of fat absorbed, yet they do not block the absorption of a particular type of fat.<ref name=A /> Likewise, lipase inhibitors are not absorbed into the [[bloodstream]]. Lipase inhibitors bind to lipase enzymes in the intestine,<ref name=B /> thus preventing the [[hydrolysis]] of dietary triglycerides into [[monoglyceride]]s and [[fatty acid]]s.<ref name=D>{{cite journal|last=Yun|first=W.|title=Possible Anti-Obesity therapeutics from nature – A review|journal=Phytochemistry|year=2010|volume=71|url=http://www.sciencedirect.com/science/article/pii/S0031942210002967|accessdate=March 22, 2012|doi=10.1016/j.phytochem.2010.07.011}}</ref> This then reduces the absorption of dietary fat.<ref name=B /> Lipase inhibitors covalently bond to the active [[serine]] site on lipases. This [[covalent bond]] is strong, meaning the lipase inhibitor tends to remain attached to the lipase.<ref name=C>{{cite book|last=Christopher|first=A.|title=Fat Digestion and Absorption|year=2000|publisher=AOCS|location=Champaign, IL, usa|pages=425–430|url=http://books.google.ca/books?ei=5-xrT7mIMeaniAKe9biFBQ&id=t5FNYzGEUDsC&dq=Drent+M%2C+van+der+Veen+EA.+Lipase+inhibition%3A+A+novel+concept+in+the+treatment+of+obesity.+Int+J+Obes.+1993%3B17%3A241-244.&q=%22lipase+inhibitor%22#v=snippet&q=%22lipase%20inhibitor%22&f=false}}</ref> Studies have shown that lipase inhibitors work optimally when 40% of an individual’s daily caloric intake is obtained from fat.<ref name=A />{{clarify|date=April 2013|reason=Really? Or is 40% a maximum?}} Orlistat tends to block absorption of 30% of total fat intake from a meal, as orlistat passes out of the digestive tract more rapidly than fat does.<ref name=B />
Lipase inhibitors may affect the amount of fat absorbed, yet they do not block the absorption of a particular type of fat.<ref name=A /> Likewise, lipase inhibitors are not absorbed into the [[bloodstream]]. Lipase inhibitors bind to lipase enzymes in the intestine,<ref name=B /> thus preventing the [[hydrolysis]] of dietary triglycerides into [[monoglyceride]]s and [[fatty acid]]s.<ref name=D>{{cite journal|last=Yun|first=W.|title=Possible Anti-Obesity therapeutics from nature – A review|journal=Phytochemistry|year=2010|volume=71|url=http://www.sciencedirect.com/science/article/pii/S0031942210002967|accessdate=March 22, 2012|doi=10.1016/j.phytochem.2010.07.011}}</ref> This then reduces the absorption of dietary fat.<ref name=B /> Lipase inhibitors covalently bond to the active [[serine]] site on lipases. This [[covalent bond]] is strong, meaning the lipase inhibitor tends to remain attached to the lipase.<ref name=C>{{cite book|last=Christopher|first=A.|title=Fat Digestion and Absorption|year=2000|publisher=AOCS|location=Champaign, IL, usa|pages=425–430|url=http://books.google.ca/books?ei=5-xrT7mIMeaniAKe9biFBQ&id=t5FNYzGEUDsC&dq=Drent+M%2C+van+der+Veen+EA.+Lipase+inhibition%3A+A+novel+concept+in+the+treatment+of+obesity.+Int+J+Obes.+1993%3B17%3A241-244.&q=%22lipase+inhibitor%22#v=snippet&q=%22lipase%20inhibitor%22&f=false}}</ref> Studies have shown that lipase inhibitors work optimally when 40% of an individual’s daily caloric intake is obtained from fat.<ref name=A />{{clarify|date=April 2013|reason=Really? Or is 40% a maximum?}} Orlistat tends to block absorption of 30% of total fat intake from a meal, as orlistat passes out of the digestive tract more rapidly than fat does.<ref name=B />

==Sources==
{{expand-section|}}
Lipase inhibitors can be found naturally in plants and can also be produces as [[Drug]]s.

Some researchers have reported they found such [[Molecule]]s in [[Ginseng|Panax]] japonicas (Japanese Ginseng)<ref>{{cite journal|last1=Birari|first1=Rahul B.|last2=Bhutani|first2=Kamlesh K.|title=Pancreatic lipase inhibitors from natural sources: unexplored potential|journal=Drug Discovery Today|date=October 2007|volume=12|issue=19-20|pages=879–889|doi=10.1016/j.drudis.2007.07.024}}</ref><ref>{{cite journal|last1=Han|first1=Li-Kun|last2=Zheng|first2=Yi-Nan|last3=Yoshikawa|first3=Masayuki|last4=Okuda|first4=Hiromichi|last5=Kimura|first5=Yoshiyuki|journal=BMC Complementary and Alternative Medicine|date=2005|volume=5|issue=1|pages=9|doi=10.1186/1472-6882-5-9}}</ref>. These plants include [[Phytochemical]]s such as [[saponin]]s, [[polyphenol]]s, [[flavonoid]]s, and [[caffeine]].<ref name=D />


==Side effects==
==Side effects==

Revision as of 18:36, 27 November 2014

Lipase inhibitors are substances used to reduce the activity of lipases found in the intestine. Lipases are secreted by the pancreas when fat is present. The primary role of lipase inhibitors is to decrease the gastrointestinal absorption of fats. Fats then tend to be excreted in feces rather than being absorbed to be used as a source of caloric energy, and this can result in weight loss in individuals.[1] These inhibitors could be used for the treatment of obesity, which can subsequently lead to Type II diabetes and cardiovascular diseases if not managed. An example of a lipase inhibitor is orlistat.[2]

Mechanism

Lipase inhibitors may affect the amount of fat absorbed, yet they do not block the absorption of a particular type of fat.[1] Likewise, lipase inhibitors are not absorbed into the bloodstream. Lipase inhibitors bind to lipase enzymes in the intestine,[2] thus preventing the hydrolysis of dietary triglycerides into monoglycerides and fatty acids.[3] This then reduces the absorption of dietary fat.[2] Lipase inhibitors covalently bond to the active serine site on lipases. This covalent bond is strong, meaning the lipase inhibitor tends to remain attached to the lipase.[4] Studies have shown that lipase inhibitors work optimally when 40% of an individual’s daily caloric intake is obtained from fat.[1][clarification needed] Orlistat tends to block absorption of 30% of total fat intake from a meal, as orlistat passes out of the digestive tract more rapidly than fat does.[2]

Sources

Lipase inhibitors can be found naturally in plants and can also be produces as Drugs.

Some researchers have reported they found such Molecules in Panax japonicas (Japanese Ginseng)[5][6]. These plants include Phytochemicals such as saponins, polyphenols, flavonoids, and caffeine.[3]

Side effects

Lipase inhibitors can cause side effects, including oily spotting, fecal incontinence, flatus with discharge[1] and abdominal cramping.[3] Additionally, a raise in blood pressure, dry mouth, constipation, headache, and insomnia have been reported.[3] Malabsorption of fat soluble vitamins may develop as a result of the impaired absorption of fat, which is required for the transportation of these vitamins across the intestine to reach the blood.[4] Since lipase inhibitors are not absorbed in the intestine, and consequently not circulating in the blood, information about alternative side effects such as the modulation[clarification needed] of the gastrointestinal tract is unobtainable.[1] Generally, side effects can be controlled by reducing the consumption of dietary fats. Overall, orlistat has been considered to be safer than other anti-obesity drugs.[2]

References

  1. ^ a b c d e Aronne, Louis. "Treating Obesity:Drug Treatment for Obesity". Treating Obesity. Medscape News. Retrieved March 22, 2012.
  2. ^ a b c d e Franson, K.; Rossner (2000). "Fat intake and food choices during weight reduction with diet, behavioural modification and a lipase inhibitor". Journal of Internal Medicine. 247 (5): 607–614. doi:10.1046/j.1365-2796.2000.t01-1-00666.x. Retrieved March 19, 2012.
  3. ^ a b c d Yun, W. (2010). "Possible Anti-Obesity therapeutics from nature – A review". Phytochemistry. 71. doi:10.1016/j.phytochem.2010.07.011. Retrieved March 22, 2012.
  4. ^ a b Christopher, A. (2000). Fat Digestion and Absorption. Champaign, IL, usa: AOCS. pp. 425–430.
  5. ^ Birari, Rahul B.; Bhutani, Kamlesh K. (October 2007). "Pancreatic lipase inhibitors from natural sources: unexplored potential". Drug Discovery Today. 12 (19–20): 879–889. doi:10.1016/j.drudis.2007.07.024.
  6. ^ Han, Li-Kun; Zheng, Yi-Nan; Yoshikawa, Masayuki; Okuda, Hiromichi; Kimura, Yoshiyuki (2005). BMC Complementary and Alternative Medicine. 5 (1): 9. doi:10.1186/1472-6882-5-9. {{cite journal}}: Missing or empty |title= (help)CS1 maint: unflagged free DOI (link)