Magnesium monohydride: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Reactions: more refs
Line 130: Line 130:
*heat capacity 29.59&nbsp;JK<sup>−1</sup> mol<sup>−1</sup><ref name="cccb"/>
*heat capacity 29.59&nbsp;JK<sup>−1</sup> mol<sup>−1</sup><ref name="cccb"/>
*Disassociation energy 1.33&nbsp;eV.<ref name="Balfour76">{{cite journal|last=Balfour|first=W. J.|coauthors=H. M. Cartwright|date=December 1976|title=A<sup>2</sup>Π-X<sup>2</sup>Σ<sup>+</sup> system and dissociation energy of magnesium hydride|journal=Astronomy and Astrophysics Supplement Series|volume=26|pages=389–397}}</ref>
*Disassociation energy 1.33&nbsp;eV.<ref name="Balfour76">{{cite journal|last=Balfour|first=W. J.|coauthors=H. M. Cartwright|date=December 1976|title=A<sup>2</sup>Π-X<sup>2</sup>Σ<sup>+</sup> system and dissociation energy of magnesium hydride|journal=Astronomy and Astrophysics Supplement Series|volume=26|pages=389–397}}</ref>
==Reactions==
==Dimer==
In noble gas matrices MgH can form two kinds of dimer: HMgMgH and a rhombic shaped (HMg)<sub>2</sub>. MgH also can form a complex with dihydrogen HMg.H<sub>2</sub>. Photolysis increases reactions which form the dimer.<ref name="Tague1994">{{cite journal|last=Tague|first=Thomas J.|coauthors=Lester Andrews|year=1994|title=Pulsed Laser Evaporated Magnesium Atom Reactions with Hydrogen: Infrared Spectra of Five Magnesium Hydride Molecules|journal=The Journal of Physical Chemistry|volume=98|issue=35|pages=8611–8616|issn=0022-3654|doi=10.1021/j100086a004}}</ref> The energy to break up the dimer HMgMgH into two MgH radicals is 197 kJ/mol. Mg(μ-H<sub>2</sub>)Mg has 63&nbsp;kJ/mol more energy than HMgMgH.<ref name="Schnepf2005">{{cite journal|last=Schnepf|first=Andreas|coauthors=Hans-Jörg Himmel|year=2005|title=Subvalent Compounds Featuring Direct Metal-Metal Bonds: The ZnZn Bond in [Cp*2Zn2]|journal=Angewandte Chemie International Edition|volume=44|issue=20|pages=3006–3008|issn=1433-7851|doi=10.1002/anie.200500597}}</ref> In theory gas phase HMgMgH can decompose to Mg<sub>2</sub> and H<sub>2</sub> releasing 24&nbsp;kJ/mol of energy exothermically.<ref name="Schnepf2005"/> The distance between the magnesium atoms in HMgMgH is calculated to be 2.861&nbsp;Å.<ref name="Boldyrev2001">{{cite journal|last=Boldyrev|first=Alexander I.|coauthors=Lai-Sheng Wang|year=2001|title=Beyond Classical Stoichiometry:  Experiment and Theory|journal=The Journal of Physical Chemistry A|volume=105|issue=48|pages=10759–10775|issn=1089-5639|doi=10.1021/jp0122629}} See page 10763 right column.</ref> HMgMgH can be considered a formal base compound for other substances RMgMgR that have a magnesium to magnesium bond. However this sort of compound is not made from HMgMgH.<ref name="Green2007">{{cite journal|last=Green|first=S. P.|coauthors=C. Jones, A. Stasch|year=2007|title=Stable Magnesium(I) Compounds with Mg-Mg Bonds|journal=Science|volume=318|issue=5857|pages=1754–1757|issn=0036-8075|doi=10.1126/science.1150856}}</ref>
In noble gas matrices MgH can form two kinds of dimer: HMgMgH and a rhombic shaped (HMg)<sub>2</sub>. MgH also can form a complex with dihydrogen HMg.H<sub>2</sub>. Photolysis increases reactions which form the dimer.<ref name="Tague1994">{{cite journal|last=Tague|first=Thomas J.|coauthors=Lester Andrews|year=1994|title=Pulsed Laser Evaporated Magnesium Atom Reactions with Hydrogen: Infrared Spectra of Five Magnesium Hydride Molecules|journal=The Journal of Physical Chemistry|volume=98|issue=35|pages=8611–8616|issn=0022-3654|doi=10.1021/j100086a004}}</ref> The energy to break up the dimer HMgMgH into two MgH radicals is 197 kJ/mol. Mg(μ-H<sub>2</sub>)Mg has 63&nbsp;kJ/mol more energy than HMgMgH.<ref name="Schnepf2005">{{cite journal|last=Schnepf|first=Andreas|coauthors=Hans-Jörg Himmel|year=2005|title=Subvalent Compounds Featuring Direct Metal-Metal Bonds: The ZnZn Bond in [Cp*2Zn2]|journal=Angewandte Chemie International Edition|volume=44|issue=20|pages=3006–3008|issn=1433-7851|doi=10.1002/anie.200500597}}</ref> In theory gas phase HMgMgH can decompose to Mg<sub>2</sub> and H<sub>2</sub> releasing 24&nbsp;kJ/mol of energy exothermically.<ref name="Schnepf2005"/> The distance between the magnesium atoms in HMgMgH is calculated to be 2.861&nbsp;Å.<ref name="Boldyrev2001">{{cite journal|last=Boldyrev|first=Alexander I.|coauthors=Lai-Sheng Wang|year=2001|title=Beyond Classical Stoichiometry:  Experiment and Theory|journal=The Journal of Physical Chemistry A|volume=105|issue=48|pages=10759–10775|issn=1089-5639|doi=10.1021/jp0122629}} See page 10763 right column.</ref> HMgMgH can be considered a formal base compound for other substances LMgMgL that have a magnesium to magnesium bond. In these magnesion can be considered to be in oxidation state +1 rather than the normal +2. However these sort of compounds are not made from HMgMgH.<ref name="Green2007">{{cite journal|last=Green|first=S. P.|coauthors=C. Jones, A. Stasch|year=2007|title=Stable Magnesium(I) Compounds with Mg-Mg Bonds|journal=Science|volume=318|issue=5857|pages=1754–1757|issn=0036-8075|doi=10.1126/science.1150856}}</ref><ref name="Jones2013">{{cite journal|last=Jones|first=Cameron|coauthors=Andreas Stasch|year=2013|title=Stable Molecular Magnesium(I) Dimers: A Fundamentally Appealing Yet Synthetically Versatile Compound Class|volume=45|pages=73–101|issn=1436-6002|doi=10.1007/978-3-642-36270-5_3}}</ref><ref name="Liu2009">{{cite journal|last=Liu|first=Yanyan|coauthors=Shaoguang Li, Xiao-Juan Yang, Peiju Yang, Biao Wu|year=2009|title=Magnesium−Magnesium Bond Stabilized by a Doubly Reduced α-Diimine: Synthesis and Structure of [K(THF)3]2[LMg−MgL] (L = [(2,6-iPr2C6H3)NC(Me)]22−)|journal=Journal of the American Chemical Society|volume=131|issue=12|pages=4210–4211|issn=0002-7863|doi=10.1021/ja900568c}}</ref>


==Related ions==
==Related ions==

Revision as of 00:47, 8 January 2015

Magnesium monohydride
Names
IUPAC name
Magnesium monohydride
Other names
Magnesium(I) hydride
Identifiers
3D model (JSmol)
  • InChI=1S/Mg.2H/q+1;;-1 ☒N
    Key: RZCHRULKKYOSQS-UHFFFAOYSA-N ☒N
  • InChI=1S/Mg.H
  • [H].[Mg]?
Properties
MgH
Molar mass 25.313 g/mol
Appearance green glowing gas[1]
reacts violently
Related compounds
Other cations
Beryllium monohydride,
Calcium monohydride,
Strontium monohydride,
Barium monohydride,
Potassium hydride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Magnesium monohydride is a molecular gas with formula MgH that exists at high temperatures, such as in stellar atmospheres.

Formation

Liveing and Dewar are claimed to be the first to make and observe a spectral line from MgH in 1878.[2][3] However they did not realise what the substance was.[4]

A laser can evaporate magnesium metal to form atoms that react with molecular hydrogen gas to form MgH and other magnesium hydrides.[5]

An electric discharge through hydrogen gas at low pressure (20 Pascals) containing pieces of magnesium can produce MgH.[6]

Thermally produced hydrogen atoms and magnesium vapour can react and condense in a solid argon matrix. This process does not work with solid neon, probably due to the formation of MgH2 instead.[7]

A simple way to produce some MgH is to burn magnesium in a bunsen burner flame, where there is enough hydrogen to form MgH temporarily. Magnesium arcs in steam also produce MgH, but also produce MgO.[4]

Natural formation of MgH happens in stars, brown dwarfs, and large planets, where the temperature is high enough. The reaction that produces it is either 2Mg + H2 → 2MgH or Mg + H → MgH. Decomposition is by the reverse process. It reqiresthe prsence of magnesium gas. Magnesium gas is seriously reduced in cool stars by clouds of enstatite. Otherwise below any magnesium silicate clouds the concentration of MgH is proportional to the square root of the pressure, and concentration of magnesium, and 10-4236/T. MgH is the second most abundant magnesium containg gas (after magnesium) in the deeper hotter parts of planets and brown dwarfs.[8]

Properties

Spectrum

  • far infrared rotational spectrum from 0.3 to 2 THz and hyperfine structure.[6]
  • infrared vibration rotation bands 800–2200 cm−1.[9] The fundamental vibration mode is at 6.7 μm.[10]
  • Three isotopes and two of hydrogen multiply the band spectra with six isotopomers: 24MgH 25MgH 26MgH 24MgD 25MgD 26MgD.[9]
  • The visible band spectrum of magnesium hydride was first observed in the 19th century, and was soon confirmed to be due to a combination of magnesium and hydrogen. Whether there was actually a compound was debated due to no solid material being able to be produced. Despite this the term magnesium hydride was used for whatever made the band spectrum. This term was used before magnesium dihydride was discovered. The spectral bands had heads with fluting in the yellow green, green, and blue parts of the visible spectrum.[4]
  • The yellow green band is around 5622 Å. Blue band is 4845 Å[11]
  • The main band in the visible spectrum is due to electronic transition between the A2Π→X2Σ+ levels combined with transitions in rotational and vibrational state.[12]
  • For each electronic transition, there are different bands for changes between the different vibrational states. Within each band there are many lines organised into three sets called branches. The P, Q and R branch are distinguished by whether the rotational quantum number increases by one, stays the same or decreases by one. Lines in each branch will have different rotational quantum numbers depending on how fast the molecules are spinning.[13]
  • The B'2Σ+→X2Σ+ system also has lines in the visible spectrum that are observable in sunspots. The bands are headless. The (0,0) band is weak compared to (0,3), (0,4), (0,5), (0,6), (0,7), (1,3), (1,4), (1,7), (1,8) vibrational bands.[10]
  • Ultraviolet[14][15][16]
  • The UV spectrum contains band heads at 3100 Å due to a vibrational transition (1,0) 2940 Å (2,0) 2720 Å (3,0) 2640 Å (0,1) 2567 Å (1,3).[17][18][19][20][21]
colour band wavelenth band head vibration transition strength
green 5211 5212 (0.0) strongest
degrades to violet[22]
5182 (1,1) strong
5155 (2,2) strong
blue 4844
yellow green 5622 5621 (0,1) quite strong
5568 (1,2) weak
5516 (2,3) weak
6083 (0,2) weak

[23]

Physical

The ground state of magnesium monohydride is X2Σ+.[1]

  • Dipole moment.[24]
  • Distance between hydrogen and magnesium atoms 1.7297Å.[25]
  • The bond has significant covalent character.[26]
  • Symmetry point group C∞v[25]
  • Moment of inertia 4.805263×10−40 g cm2[25]
  • Enthalpy of formation 229.79 kJ mol−1[25]
  • Entropy 193.20 JK−1 mol−1[25]
  • heat capacity 29.59 JK−1 mol−1[25]
  • Disassociation energy 1.33 eV.[27]

Dimer

In noble gas matrices MgH can form two kinds of dimer: HMgMgH and a rhombic shaped (HMg)2. MgH also can form a complex with dihydrogen HMg.H2. Photolysis increases reactions which form the dimer.[5] The energy to break up the dimer HMgMgH into two MgH radicals is 197 kJ/mol. Mg(μ-H2)Mg has 63 kJ/mol more energy than HMgMgH.[28] In theory gas phase HMgMgH can decompose to Mg2 and H2 releasing 24 kJ/mol of energy exothermically.[28] The distance between the magnesium atoms in HMgMgH is calculated to be 2.861 Å.[29] HMgMgH can be considered a formal base compound for other substances LMgMgL that have a magnesium to magnesium bond. In these magnesion can be considered to be in oxidation state +1 rather than the normal +2. However these sort of compounds are not made from HMgMgH.[30][31][32]

Related ions

  • MgH+
  • MgH-[33], MgH3- and MgH2- formed with low pressure hydrogen or ammonia over a magnesium cathode.[33] The trihydride ion is produced the most, and in a greater proportion when pure hydrogen is used.[33]

Applications

The spectrum of MgH in stars can be used to measure the isotope ratio of magnesium, the temperature, and gravity of the surface of the star.[34] In hot stars MgH will be mostly dissassociated due to the heat breaking the molecules, but it can be detected in cooler G, K and M type stars.[35] It can also be detected in starspots or sunspots. The MgH spectrum can be used to study the magnetic field and nature of starspots.[36]

References

  1. ^ a b Ziurys, L. M. (1993). "The millimeter-wave spectrum of the MgH and MgD radicals". The Astrophysical Journal. 402: L21–L24. doi:10.1086/186690. ISSN 0004-637X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  2. ^ Liveing, G. D. (1878). "On the Reversal of the Lines of Metallic Vapours. No. IV". Proceedings of the Royal Society of London. 28 (190–195): 352–358. doi:10.1098/rspl.1878.0140. ISSN 0370-1662. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ Liveing, G. D. (1879). "On the Spectra of the Compounds of Carbon with Hydrogen and Nitrogen. No. II". Proceedings of the Royal Society of London. 30 (200–205): 494–509. doi:10.1098/rspl.1879.0152. ISSN 0370-1662. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ a b c Fowler, A. (1909). "The Spectrum of Magnesium Hydride" (PDF). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 209 (441–458): 447–478. doi:10.1098/rsta.1909.0017. ISSN 1364-503X.
  5. ^ a b Tague, Thomas J. (1994). "Pulsed Laser Evaporated Magnesium Atom Reactions with Hydrogen: Infrared Spectra of Five Magnesium Hydride Molecules". The Journal of Physical Chemistry. 98 (35): 8611–8616. doi:10.1021/j100086a004. ISSN 0022-3654. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  6. ^ a b Zink, L. R. (1990). "Laboratory measurements for the astrophysical identification of MgH" (PDF). The Astrophysical Journal. 359: L65. doi:10.1086/185796. ISSN 0004-637X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ Knight, Lon B. (1 May 1971). "Hyperfine Interaction and Chemical Bonding in MgH, CaH, SrH, and BaH Molecules". The Journal of Chemical Physics. 54 (9): 3875–3884. doi:10.1063/1.1675441. ISSN 0021-9606. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  8. ^ Visscher, Channon (2010). "ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON". The Astrophysical Journal. 716 (2): 1060–1075. doi:10.1088/0004-637X/716/2/1060. ISSN 0004-637X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help) Pages 1065-1068 concentrate on magnesium.
  9. ^ a b Shayesteh, A. (2004). "Fourier transform infrared emission spectra of MgH and MgD". The Journal of Chemical Physics. 120 (21): 10002. doi:10.1063/1.1724821. ISSN 0021-9606. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  10. ^ a b Wallace, Lloyd (1999). "The MgH B′2Σ+–X2Σ+Transition: A New Tool for Studying Magnesium Isotope Abundances". The Astrophysical Journal. 524 (1): 454–461. doi:10.1086/307798. ISSN 0004-637X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  11. ^ Öhman, Yngve (3 June 1936). "On the bands of magnesium hydride in stellar spectra". Stockholms observatoriums annaler. 12 (8).
  12. ^ Balfour, W. J. (December 1970). "The A2Π→X2Σ+ Systems of 24Mg 25Mg 26Mg". The Astrophysical Journal. 162: 1031–1035.
  13. ^ Watson, William W. (1926). "The Magnesium Hydride Band Spectrum". The Astrophysical Journal. 63: 20. doi:10.1086/142947. ISSN 0004-637X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  14. ^ Turner, Louis (1937). "The Ultraviolet Bands of Magnesium Hydride". Physical Review. 52 (6): 626–630. doi:10.1103/PhysRev.52.626. ISSN 0031-899X. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  15. ^ Khan, M Aslam (1962). "MgH Bands at 2172, 2100 and 2088 and MgD Bands at 2172, 2358 and 2364 A". Proceedings of the Physical Society. 80 (1): 209–221. doi:10.1088/0370-1328/80/1/324. ISSN 0370-1328.
  16. ^ Pearse, R. W. B. (1929). "The Ultra-Violet Spectrum of Magnesium Hydride. 1. The Band at Formula 2430". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 122 (790): 442–455. doi:10.1098/rspa.1929.0033. ISSN 1364-5021.
  17. ^ Pearse, R. W. B. (1929). "The Ultra-Violet Spectrum of Magnesium Hydride. II. The Many-Lined Formula-System". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 125 (796): 157–179. doi:10.1098/rspa.1929.0159. ISSN 1364-5021.
  18. ^ Khan, M Aslam (1961). "MgH and MgD Bands at 2819 and 2702". Proceedings of the Physical Society. 77 (6): 1133–1140. doi:10.1088/0370-1328/77/6/304. ISSN 0370-1328.
  19. ^ Balfour, W J (1970). "The electronic spectrum of magnesium hydride and magnesium deuteride". Journal of Physics B: Atomic and Molecular Physics. 3 (12): 1749–1756. doi:10.1088/0022-3700/3/12/019. ISSN 0022-3700.
  20. ^ Grundstrõm, B. (1936). "Absorption Spectrum of Magnesium Hydride in the Ultra-Violet". Nature. 137 (3455): 108–109. doi:10.1038/137108b0. ISSN 0028-0836.
  21. ^ Guntsch, Arnold (1938). "Druckeffekt in der Magnesiumhydridbande bei λ 2590 Å". Zeitschrift für Physik (in German). 110 (9–10): 549–552. doi:10.1007/BF01340215. ISSN 1434-6001.
  22. ^ Branch, David (1970). "Isotopes of Magnesium in the Sun" (PDF). The Astrophysical Journal. 159: 39. doi:10.1086/150288. ISSN 0004-637X.
  23. ^ Sotirovski, P. (2 July 1971). "The Molecular Spectrum of Sunspot Umbrae". Astronomy and Astrophysics. 14: 319.
  24. ^ Fowler, P.W. (2006). "Correlated studies of electric properties of ionic molecules: alkali and alkaline-earth hydrides, halides and chalcogenides". Molecular Physics. 73 (1): 43–55. doi:10.1080/00268979100101041. ISSN 0026-8976. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  25. ^ a b c d e f "CCCBDB Listing of experimental data for MgH (magnesium monohydride)". Retrieved 3 January 2015.
  26. ^ Bucchino, Matthew P. (2013). "Terahertz Spectroscopy of25MgH (X2Σ+) and67ZnH (X2Σ+): Bonding in Simple Metal Hydrides". The Journal of Physical Chemistry A. 117 (39): 9732–9737. doi:10.1021/jp3123743. ISSN 1089-5639. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  27. ^ Balfour, W. J. (December 1976). "A2Π-X2Σ+ system and dissociation energy of magnesium hydride". Astronomy and Astrophysics Supplement Series. 26: 389–397. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  28. ^ a b Schnepf, Andreas (2005). "Subvalent Compounds Featuring Direct Metal-Metal Bonds: The ZnZn Bond in [Cp*2Zn2]". Angewandte Chemie International Edition. 44 (20): 3006–3008. doi:10.1002/anie.200500597. ISSN 1433-7851. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  29. ^ Boldyrev, Alexander I. (2001). "Beyond Classical Stoichiometry:  Experiment and Theory". The Journal of Physical Chemistry A. 105 (48): 10759–10775. doi:10.1021/jp0122629. ISSN 1089-5639. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); no-break space character in |title= at position 32 (help) See page 10763 right column.
  30. ^ Green, S. P. (2007). "Stable Magnesium(I) Compounds with Mg-Mg Bonds". Science. 318 (5857): 1754–1757. doi:10.1126/science.1150856. ISSN 0036-8075. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  31. ^ Jones, Cameron (2013). "Stable Molecular Magnesium(I) Dimers: A Fundamentally Appealing Yet Synthetically Versatile Compound Class". 45: 73–101. doi:10.1007/978-3-642-36270-5_3. ISSN 1436-6002. {{cite journal}}: Cite journal requires |journal= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  32. ^ Liu, Yanyan (2009). "Magnesium−Magnesium Bond Stabilized by a Doubly Reduced α-Diimine: Synthesis and Structure of [K(THF)3]2[LMg−MgL] (L = [(2,6-iPr2C6H3)NC(Me)]22−)". Journal of the American Chemical Society. 131 (12): 4210–4211. doi:10.1021/ja900568c. ISSN 0002-7863. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  33. ^ a b c Middleton, Roy (February 1990). "A Negative Ion Cookbook" (PDF). pp. 10, 40–42. Retrieved 7 January 2015.
  34. ^ Yadin, Benjamin (2012). "ExoMol line lists - I. The rovibrational spectrum of BeH, MgH and CaH in theX 2Σ+state". Monthly Notices of the Royal Astronomical Society. 425 (1): 34–43. doi:10.1111/j.1365-2966.2012.21367.x. ISSN 0035-8711. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  35. ^ Pavlenko, Ya. V. (2008). "The electronic bands of CrD, CrH, MgD and MgH: application to the 'deuterium test'" (PDF). Monthly Notices of the Royal Astronomical Society. 386 (3): 1338–1346. doi:10.1111/j.1365-2966.2008.12522.x. ISSN 0035-8711. Retrieved 5 January 2015. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  36. ^ Afram, Nadine (2008). Molecular Diagnostics of Solar and Stellar Magnetic Fields. Cuvillier Verlag. p. 95. ISBN 9783867277631. Retrieved 5 January 2015.

Other reading


  1. ^ Guntsch, Arnold (1934). "Uber das Bandenspektrum des Magnesiumhydrids". Zeitschrift für Physik (in German). 87 (5–6): 312–322. doi:10.1007/bf01333426. ISSN 1434-6001.
  2. ^ Guntsch, Arnold. "Neue Untersuchungen über das Bandenspektrum des Magnesiumhydrids". Zeitschrift für Physik (in German). 104 (7–8). ISSN 1434-6001.
  3. ^ Gumtsch, Arnold (1935). "Über das ultraviolette Bandenspektrum des Magnesiumhydrids und Magnesiumdeutrids". Zeitschrift für Physik (in German). 93 (7–8): 534–538. doi:10.1007/bf01330379. ISSN 1434-6001.
  4. ^ Guntsch, Arnold (1937). "Über einige neue Banden des Magnesiumhydrids". Zeitschrift für Physik (in German). 107 (5–6): 420–424. doi:10.1007/bf01330185. ISSN 1434-6001.
  5. ^ Balfour, Walter J. (1975). "Low-lying electronic states of magnesium hydride". Chemical Physics Letters. 32 (1): 82–85. doi:10.1016/0009-2614(75)85173-6. ISSN 0009-2614. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  6. ^ Balfour, Walter J. (1976). "TheB′2Σ+ → X2Σ+systems of MgH and MgD". Canadian Journal of Physics. 54 (18): 1898–1904. doi:10.1139/p76-229. ISSN 0008-4204. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ Chan, Arthur C. H. (1970). "Theoretical Study of the MgH Molecule". The Journal of Chemical Physics. 52 (8): 4108. doi:10.1063/1.1673619. ISSN 0021-9606.
  8. ^ Sink, M.L. (1976). "Theoretical study of the low-lying electronic states of MgH". Chemical Physics Letters. 39 (3): 505–510. doi:10.1016/0009-2614(76)80316-8. ISSN 0009-2614. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Main, Roger P. (1967). "Measurement of oscillator strengths of the MgO(B1Σ+ - X1Σ+) and MgH(A2π - X2Σ+) band systems". Journal of Quantitative Spectroscopy and Radiative Transfer. 7 (5): 805–811. doi:10.1016/0022-4073(67)90036-2. ISSN 0022-4073. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)