CM chondrite: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
m Alter: title, isbn, volume, journal. Add: hdl, pmc, title, arxiv, pages, pmid, volume, journal, bibcode, doi, issue. Removed parameters. Formatted dashes. | You can use this bot yourself. Report bugs here.| Activated by User:Lithopsian | via #UCB_toolbar
Line 3: Line 3:
==Overview and Taxonomy==
==Overview and Taxonomy==


Meteorites mostly divide into [[Ordinary chondrite|Ordinary]] and [[Carbonaceous chondrite|'Carbonaceous' chondrite]] classes; far fewer belong to lesser classes like Enstatites and Ureilites. The term 'chondrite' indicates that these contain (or may have contained) [[chondrules]] in a matrix. Chondrules are cooled droplets of minerals, predating the meteorites themselves. The term 'carbonaceous' was assigned relative to the ordinary chondrites; some Enstatite and Ureilite meteorites may have more carbon than C-chondrites.<ref>{{cite book |last1=Scott |first1=E |last2=Krot |first2=A |title=Treatise on Geochemistry|volume=1 |date=2003 |page=143 |publisher=Elsevier |isbn=0-08-043751-6}} Ch. Chondrites and their Components </ref> Still, all C-chondrites are distinguished from ordinary chondrites by a non-trace carbon content (resulting in a dark color), plus other [[volatiles]], giving a lower density.<ref name="britt00">{{cite journal |last1=Britt |first1=D |title=The porosity of dark meteorites and the structure of low-albedo asteroids |bibcode=2000Icar..146..213B |journal=Icarus |date=Jul 2000 |volume=143 |page=213}}</ref><ref>{{cite journal |last1=Macke |first1=R |last2=Consolmagno |first2=G |last3=Britt |first3=D |title=Density, porosity, and magnetic susceptibility of carbonaceous chondrites |journal=Meteoritics & Planetary Science |date=Nov 2011 |volume=46 |page=1842}}</ref> After the classes were devised, a more rigorous definition was found: C-chondrites contain proportionally higher magnesium than ordinary chondrites.<ref>{{cite journal |last1=Urey |first1=H |title=Criticism of Dr. B. Mason's paper on “The origin of meteorites” |bibcode=1961JGR....66.1988U |journal=Journ. Geophys. Res |date=Jun 1961 |volume=66 |page=1988}}</ref><ref>{{cite journal |last1=Ahrens |first1=L |title=Si-Mg fractionation in chondrites |bibcode=1964GeCoA..28..411A |journal=Geochimica et Cosmochimica Acta |date=1964 |volume=28 |page=411}}</ref><ref>{{cite journal |last1=Ahrens |first1=L |title=Observations on the Fe-Si-Mg relationship in chondrites |bibcode=1965GeCoA..29..801A |journal=Geochimica et Cosmochimica Acta |date=1965 |volume=29 |page=801}}</ref>
Meteorites mostly divide into [[Ordinary chondrite|Ordinary]] and [[Carbonaceous chondrite|'Carbonaceous' chondrite]] classes; far fewer belong to lesser classes like Enstatites and Ureilites. The term 'chondrite' indicates that these contain (or may have contained) [[chondrules]] in a matrix. Chondrules are cooled droplets of minerals, predating the meteorites themselves. The term 'carbonaceous' was assigned relative to the ordinary chondrites; some Enstatite and Ureilite meteorites may have more carbon than C-chondrites.<ref>{{cite book |last1=Scott |first1=E |last2=Krot |first2=A |title=Treatise on Geochemistry|volume=1 |date=2003 |page=143 |publisher=Elsevier |isbn=0-08-043751-6}} Ch. Chondrites and their Components </ref> Still, all C-chondrites are distinguished from ordinary chondrites by a non-trace carbon content (resulting in a dark color), plus other [[volatiles]], giving a lower density.<ref name="britt00">{{cite journal |last1=Britt |first1=D |title=The porosity of dark meteorites and the structure of low-albedo asteroids |bibcode=2000Icar..146..213B |journal=Icarus |date=Jul 2000 |volume=143 |issue=1 |page=213}}</ref><ref>{{cite journal |last1=Macke |first1=R |last2=Consolmagno |first2=G |last3=Britt |first3=D |title=Density, porosity, and magnetic susceptibility of carbonaceous chondrites |journal=Meteoritics & Planetary Science |date=Nov 2011 |volume=46 |issue=12 |page=1842|doi=10.1111/j.1945-5100.2011.01298.x |bibcode=2011M&PS...46.1842M }}</ref> After the classes were devised, a more rigorous definition was found: C-chondrites contain proportionally higher magnesium than ordinary chondrites.<ref>{{cite journal |last1=Urey |first1=H |title=Criticism of Dr. B. Mason's paper on "The origin of meteorites" |bibcode=1961JGR....66.1988U |journal=Journ. Geophys. Res |date=Jun 1961 |volume=66 |issue=6 |page=1988|doi=10.1029/JZ066i006p01988 }}</ref><ref>{{cite journal |last1=Ahrens |first1=L |title=Si-Mg fractionation in chondrites |bibcode=1964GeCoA..28..411A |journal=Geochimica et Cosmochimica Acta |date=1964 |volume=28 |issue=4 |page=411|doi=10.1016/0016-7037(64)90115-2 }}</ref><ref>{{cite journal |last1=Ahrens |first1=L |title=Observations on the Fe-Si-Mg relationship in chondrites |bibcode=1965GeCoA..29..801A |journal=Geochimica et Cosmochimica Acta |date=1965 |volume=29 |issue=7 |page=801|doi=10.1016/0016-7037(65)90032-3 }}</ref>


The C-chondrites subdivide into [[CI chondrite|CI]], CM, CO, CV, CK, CR, and lesser groups (CH, CB, and ungrouped C-meteorites). Specimens are formed into groups by their petrological and chemical qualities, and the group named for a salient example. These include the CI (Ivuna-like), CM (Mighei-like), CO ([[Ornans (meteorite)|Ornans]]-like), etc. The CM group most resembles the CI and CO chondrites; a CM-CO is sometimes described.<ref name="kallemeynwassoni">{{cite journal |last1=Kallemeyn |first1=G |last2=Wasson |first2=J |title=The compositional classification of chondrites-I. The carbonaceous chondrite groups |journal=Geochimica et Cosmochimica Acta |date=1981 |volume=45 |page=1217}}</ref><ref name="weisberg">{{cite book |last1=Weisberg |first1=M |bibcode=1981GeCoA..45.1217K |last2=McCoy |first2=T |last3=Krot |first3=A |title=Meteorites and the Early Solar System II |date=2006 |publisher=University of Arizona Press |location=Tucson |page=19 |chapter=Systematics and Evaluation of Meteorite Classification}}</ref><ref>{{cite web |title=CM-CO clan chondrites |url=https://www.lpi.usra.edu/meteor/metbull.php?sea=&sfor=names&stype=contains&lrec=50&categ=CM-CO+clan+chondrites&srt= |website=Meteoritical Bulletin: Search the Database |publisher=The Meteoritical Society |accessdate=10 Sep 2019}}</ref> All three groups contain clearly anomalous [[Isotopes of titanium|<sup>50</sup>Ti]] and [[Isotopes of chromium|<sup>54</sup>Cr]] isotopes.<ref>{{cite journal |last1=Trinquier |first1=A |last2=Elliott |first2=T |last3=Ulfbeck |first3=D |last4=Coath |first4=C |last5=Krot |first5=A |last6=Bizzarro |first6=M |title=Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk |doi=10.1126/science.1168221 |journal=Science |date=17 Apr 2009 |volume=324 |issue=5925 |page=374}}</ref><ref>{{cite journal |last1=Qin |first1=L |last2=Rumble |first2=D |last3=Alexander |first3=C |last4=Carlson |first4=R |last5=Jenniskens |first5=P |last6=Shaddad |first6=M |title=The chromium isotopic composition of Almahata Sitta |bibcode=2010LPI....41.1910Q |journal=Meteoritics & Planetary Science |date=2010 |volume=45 |page=1771}}</ref>
The C-chondrites subdivide into [[CI chondrite|CI]], CM, CO, CV, CK, CR, and lesser groups (CH, CB, and ungrouped C-meteorites). Specimens are formed into groups by their petrological and chemical qualities, and the group named for a salient example. These include the CI (Ivuna-like), CM (Mighei-like), CO ([[Ornans (meteorite)|Ornans]]-like), etc. The CM group most resembles the CI and CO chondrites; a CM-CO is sometimes described.<ref name="kallemeynwassoni">{{cite journal |last1=Kallemeyn |first1=G |last2=Wasson |first2=J |title=The compositional classification of chondrites-I. The carbonaceous chondrite groups |journal=Geochimica et Cosmochimica Acta |date=1981 |volume=45 |page=1217|doi=10.1016/0016-7037(81)90145-9 }}</ref><ref name="weisberg">{{cite book |last1=Weisberg |first1=M |bibcode=1981GeCoA..45.1217K |last2=McCoy |first2=T |last3=Krot |first3=A |title=Meteorites and the Early Solar System II |journal=Geochimica et Cosmochimica Acta |volume=45 |issue=7 |date=2006 |publisher=University of Arizona Press |location=Tucson |page=19 |chapter=Systematics and Evaluation of Meteorite Classification}}</ref><ref>{{cite web |title=CM-CO clan chondrites |url=https://www.lpi.usra.edu/meteor/metbull.php?sea=&sfor=names&stype=contains&lrec=50&categ=CM-CO+clan+chondrites&srt= |website=Meteoritical Bulletin: Search the Database |publisher=The Meteoritical Society |accessdate=10 Sep 2019}}</ref> All three groups contain clearly anomalous [[Isotopes of titanium|<sup>50</sup>Ti]] and [[Isotopes of chromium|<sup>54</sup>Cr]] isotopes.<ref>{{cite journal |last1=Trinquier |first1=A |last2=Elliott |first2=T |last3=Ulfbeck |first3=D |last4=Coath |first4=C |last5=Krot |first5=A |last6=Bizzarro |first6=M |title=Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk |doi=10.1126/science.1168221 |pmid=19372428 |journal=Science |date=17 Apr 2009 |volume=324 |issue=5925 |pages=374–6 |bibcode=2009Sci...324..374T }}</ref><ref>{{cite journal |last1=Qin |first1=L |last2=Rumble |first2=D |last3=Alexander |first3=C |last4=Carlson |first4=R |last5=Jenniskens |first5=P |last6=Shaddad |first6=M |title=The chromium isotopic composition of Almahata Sitta |bibcode=2010LPI....41.1910Q |journal=Meteoritics & Planetary Science |date=2010 |volume=45 |issue=1533 |page=1771|doi=10.1111/j.1945-5100.2010.01109.x }}</ref>


Though the C-chondrites are far rarer than ordinary chondrites, the CM group is "the most abundant type of" them.<ref>{{cite journal |last1=McSween |first1=H |title=Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix |doi=10.1016/0016-7037(79)90024-3 |journal=Geochimica et Cosmochimica Acta |date=1979 |volume=43 |page=1761}}</ref><ref name="howard11">{{cite journal |last1=Howard |first1=K |last2=Benedix |first2=G |last3=Bland |first3=P |last4=Cressey |first4=G |title=Modal mineralogy of CM chondrites by X-ray Diffraction (PSR-XRD) |doi=10.1111/j.1945-5100.2004.tb00046.x |journal=Geochimica et Cosmochimica Acta |date=2011 |volume=75 |page=2735}}</ref> The latest Catalogue of Meteorites (5th edition, 2000) gives 15 CM [[Meteorite fall|falls]] ([[Bolide|observed entries]], then recoveries), and 146 [[Meteorite find|finds]] (meteorites with entries unobserved, possibly ancient). By contrast, the next highest are the COs- 5 falls, 80 finds listed. These are in a class of 36 C-chondrite falls, 435 finds. If the CMs and COs are taken to be a clan, its dominance is even higher.<ref>{{cite book |last1=Grady |first1=M |title=The Catalogue of Meteorites |date=2000 |publisher=Cambridge University Press |location=Cambridge |isbn=0 521 66303 2}}</ref>
Though the C-chondrites are far rarer than ordinary chondrites, the CM group is "the most abundant type of" them.<ref>{{cite journal |last1=McSween |first1=H |title=Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix |doi=10.1016/0016-7037(79)90024-3 |journal=Geochimica et Cosmochimica Acta |date=1979 |volume=43 |issue=11 |page=1761|bibcode=1979GeCoA..43.1761M }}</ref><ref name="howard11">{{cite journal |last1=Howard |first1=K |last2=Benedix |first2=G |last3=Bland |first3=P |last4=Cressey |first4=G |title=Modal mineralogy of CM chondrites by X-ray Diffraction (PSR-XRD) |doi=10.1111/j.1945-5100.2004.tb00046.x |journal=Geochimica et Cosmochimica Acta |date=2011 |volume=75 |page=2735}}</ref> The latest Catalogue of Meteorites (5th edition, 2000) gives 15 CM [[Meteorite fall|falls]] ([[Bolide|observed entries]], then recoveries), and 146 [[Meteorite find|finds]] (meteorites with entries unobserved, possibly ancient). By contrast, the next highest are the COs- 5 falls, 80 finds listed. These are in a class of 36 C-chondrite falls, 435 finds. If the CMs and COs are taken to be a clan, its dominance is even higher.<ref>{{cite book |last1=Grady |first1=M |title=The Catalogue of Meteorites |date=2000 |publisher=Cambridge University Press |location=Cambridge |isbn=0-521-66303-2}}</ref>


==Petrology==
==Petrology==


C-chondrites in general, and CM chondrites among them, have low densities for meteorites. CMs are slightly more dense (~2.1 gram/cc) than the CIs, but less dense than CO and other C-chondrites.<ref>{{cite journal |last1=Britt |first1=D |last2=Consolmagno |first2=G |title=Stony meteorite porosities and densities: A review of the data through 2001|doi=10.1111/j.1945-5100.2003.tb00305.x |journal=Meteoritics & Planetary Science |date=August 2003 |volume=38 |page=1161}}</ref><ref>{{cite journal |last1=Carry |first1=B |title=Density of asteroids |bibcode=2012P&SS...73...98C |journal=Planetary & Space Science |date=2012 |volume=73 |issue=1 |page=98}}</ref> This is due to a combination of [[Breccia|brecciation]] (rock lithified from fragments of prior rocks)<ref>{{cite conference |last1=Bischoff |first1=A |last2=Ebert |first2=S |last3=Metzler |first3=K |last4=Lentfort |first4=S |title=Breccia Classification of CM Chondrites |bibcode=2017LPICo1987.6089B |conference=80th Meteoritical Society |date=2017 |issue=1987}}</ref> including porosities<ref name="britt00"/> and inherently light constituent materials (see chemistry, below). (Rare unbrecciated CMs include Y-791198 and ALH81002.<ref>{{cite conference |last1=Chizmadia |first1=L |last2=Brearley |first2=A |title=Aqueous Alteration Of Carbonaceous Chondrites: New Insights From Comparative Studies Of Two Unbrecciated CM2 Chondrite, Y-791198 And ALH81002 |bibcode=2004LPI....35.1753C |conference=LPS XXXV |date=2004 |issue=1753}}</ref>)
C-chondrites in general, and CM chondrites among them, have low densities for meteorites. CMs are slightly more dense (~2.1 gram/cc) than the CIs, but less dense than CO and other C-chondrites.<ref>{{cite journal |last1=Britt |first1=D |last2=Consolmagno |first2=G |title=Stony meteorite porosities and densities: A review of the data through 2001|doi=10.1111/j.1945-5100.2003.tb00305.x |journal=Meteoritics & Planetary Science |date=August 2003 |volume=38 |issue=8 |page=1161|bibcode=2003M&PS...38.1161B }}</ref><ref>{{cite journal |last1=Carry |first1=B |title=Density of asteroids |bibcode=2012P&SS...73...98C |journal=Planetary & Space Science |date=2012 |volume=73 |issue=1 |page=98|arxiv=1203.4336 |doi=10.1016/j.pss.2012.03.009 }}</ref> This is due to a combination of [[Breccia|brecciation]] (rock lithified from fragments of prior rocks)<ref>{{cite conference |last1=Bischoff |first1=A |last2=Ebert |first2=S |last3=Metzler |first3=K |last4=Lentfort |first4=S |title=Breccia Classification of CM Chondrites |bibcode=2017LPICo1987.6089B |conference=80th Meteoritical Society |date=2017 |issue=1987}}</ref> including porosities<ref name="britt00"/> and inherently light constituent materials (see chemistry, below). (Rare unbrecciated CMs include Y-791198 and ALH81002.<ref>{{cite conference |last1=Chizmadia |first1=L |last2=Brearley |first2=A |title=Aqueous Alteration Of Carbonaceous Chondrites: New Insights From Comparative Studies Of Two Unbrecciated CM2 Chondrite, Y-791198 And ALH81002 |bibcode=2004LPI....35.1753C |conference=LPS XXXV |date=2004 |issue=1753}}</ref>)


Based primarily on petrology, early scientists attempted to quantify different meteorites. [[Gustav Rose|Rose]] ("kohlige meteorite"),<ref>{{cite book |last1=Rose |first1=G |title=Physik. Abhandl. Akad. Wiss. |date=1863 |location=Berlin |page=23}}</ref> then [[Gustav_Tschermak_von_Seysenegg|Tschermak]] devised early taxonomies.<ref>{{cite journal|last1=Tschermak|first1=G|title=Beitrag zur Classification der Meteoriten|journal=Math. -Naturw. Cl.|publisher=Sitzber. Akad. Wiss.|date=1883|volume=85|issue=1|pages=347–71}}</ref> In the 1904 scheme of [[Aristides_Brezina|Brezina]], today's CM chondrites would be "K" ("coaly chondrites").<ref>{{cite journal |last1=Brezina |first1=A |title=The Arrangement of Collections of Meteorites |jstor=983506 |journal=Proc. Amer. Phil. Soc. |date=1904 |volume=43 |page=211}}</ref> Wiik published the first recognizably modern system in 1956, dividing meteorites into Type I, II, and III. CMs fell within Wiik's Type II.<ref>{{cite journal |last1=Wiik |first1=H |title=The chemical composition of some stony meteorites |bibcode=1956GeCoA...9..279W |journal=Geochimica et Cosmochimica Acta |date=1956 |volume=9 |page=279}}</ref>
Based primarily on petrology, early scientists attempted to quantify different meteorites. [[Gustav Rose|Rose]] ("kohlige meteorite"),<ref>{{cite book |last1=Rose |first1=G |title=Physik. Abhandl. Akad. Wiss. |date=1863 |location=Berlin |page=23}}</ref> then [[Gustav_Tschermak_von_Seysenegg|Tschermak]] devised early taxonomies.<ref>{{cite journal|last1=Tschermak|first1=G|title=Beitrag zur Classification der Meteoriten|journal=Math. -Naturw. Cl.|publisher=Sitzber. Akad. Wiss.|date=1883|volume=85|issue=1|pages=347–71}}</ref> In the 1904 scheme of [[Aristides_Brezina|Brezina]], today's CM chondrites would be "K" ("coaly chondrites").<ref>{{cite journal |last1=Brezina |first1=A |title=The Arrangement of Collections of Meteorites |jstor=983506 |journal=Proc. Amer. Phil. Soc. |date=1904 |volume=43 |issue=176 |pages=211–247 }}</ref> Wiik published the first recognizably modern system in 1956, dividing meteorites into Type I, II, and III. CMs fell within Wiik's Type II.<ref>{{cite journal |last1=Wiik |first1=H |title=The chemical composition of some stony meteorites |bibcode=1956GeCoA...9..279W |journal=Geochimica et Cosmochimica Acta |date=1956 |volume=9 |issue=5 |page=279|doi=10.1016/0016-7037(56)90028-X }}</ref>


The CM chondrites are essentially all Type 2 in the petrographic scale of Van Schmus and Wood 1967; by that time, CI and CM recoveries were enough to define the 'left' (aqueous alteration) end of the scale. (CI chondrites, the Van Schmus Wood Type 1, is equivalent to Wiik's Type I, etc.) The types 4 through 6 indicate increasing thermal alteration; Type 3 is assumed to be unaltered.<ref>{{cite journal |last1=Van Schmus |first1=W |last2=Wood |first2=J |title=A chemical-petrologic classification for the chondritic meteorites |bibcode=1967GeCoA..31..747V |journal=Geochimica et Cosmochimica Acta |date=1967 |volume=31 |issue=5 |page=747}}</ref>
The CM chondrites are essentially all Type 2 in the petrographic scale of Van Schmus and Wood 1967; by that time, CI and CM recoveries were enough to define the 'left' (aqueous alteration) end of the scale. (CI chondrites, the Van Schmus Wood Type 1, is equivalent to Wiik's Type I, etc.) The types 4 through 6 indicate increasing thermal alteration; Type 3 is assumed to be unaltered.<ref>{{cite journal |last1=Van Schmus |first1=W |last2=Wood |first2=J |title=A chemical-petrologic classification for the chondritic meteorites |bibcode=1967GeCoA..31..747V |journal=Geochimica et Cosmochimica Acta |date=1967 |volume=31 |issue=5 |page=747|doi=10.1016/S0016-7037(67)80030-9 }}</ref>


The modern groups 'V' and 'O' were named by Van Schmus in 1969 as divisions of Type 3, as 'subclass C3V' and 'C3O'.<ref>{{cite book|editor-last1=Millman|editor-first1=P.|title=Meteorite Research |date=1969 |publisher=D. Reidel Publishing Company |location=Dordrecht |isbn=978-94-010-3413-5 |page=480 |chapter=Mineralogical, Petrology, and Classification of Types 3 and 4 Carbonaceous Chondrites}}</ref> Wasson then added C2M in 1974; since then, C2Ms have generally been shortened to simply 'CM', as have the other groups.<ref>{{cite book |last1=Wasson |first1=J |title=Meteorites: Classification and Properties |date=1974 |publisher=Springer-Verlag |location=New York |isbn=978-3-642-65865-5}}</ref>
The modern groups 'V' and 'O' were named by Van Schmus in 1969 as divisions of Type 3, as 'subclass C3V' and 'C3O'.<ref>{{cite book|editor-last1=Millman|editor-first1=P.|title=Meteorite Research |date=1969 |publisher=D. Reidel Publishing Company |location=Dordrecht |isbn=978-94-010-3413-5 |page=480 |chapter=Mineralogical, Petrology, and Classification of Types 3 and 4 Carbonaceous Chondrites}}</ref> Wasson then added C2M in 1974; since then, C2Ms have generally been shortened to simply 'CM', as have the other groups.<ref>{{cite book |last1=Wasson |first1=J |title=Meteorites: Classification and Properties |date=1974 |publisher=Springer-Verlag |location=New York |isbn=978-3-642-65865-5}}</ref>
Line 40: Line 40:
|CK || || || style="background: black;" | || style="background: black;" | || style="background: black;" | || style="background: black;" | ||
|CK || || || style="background: black;" | || style="background: black;" | || style="background: black;" | || style="background: black;" | ||
|}
|}
''After Weisberg et al. 2006,''<ref name="weisberg"/> ''Giese et al. 2019''<ref>{{cite journal |last1=Giese |first1=C Ten Kate I Plumper O King H Lenting C Liu Y Tielens A |title=The evolution of polycyclic aromatic hydrocarbons under simulated inner asteroid conditions |doi=10.1111/maps.13359 |journal=Meteoritics & Planetary Science |date=Jul 2019 |volume=54 |page=1930}}</ref> Note: lone CV2 specimen, Mundrabilla 012<ref>{{cite web |title=Meteoritical Bulletin: Entry for Mundrabilla 012 |url=https://www.lpi.usra.edu/meteor/metbull.php?code=16863 |website=Meteoritical Bulletin |publisher=The Meteoritical Society |accessdate=14 Sep 2019}}</ref><ref>{{cite web |title=Mundrabilla 012 meteorite, Mundrabilla Roadhouse, Dundas Shire, Western Australia, Australia |url=https://www.mindat.org/loc-297049.html |website=Mindat.org |accessdate=14 Sep 2019}}</ref>
''After Weisberg et al. 2006,''<ref name="weisberg"/> ''Giese et al. 2019''<ref>{{cite journal |last1=Giese |first1=C Ten Kate I Plumper O King H Lenting C Liu Y Tielens A |title=The evolution of polycyclic aromatic hydrocarbons under simulated inner asteroid conditions |doi=10.1111/maps.13359 |journal=Meteoritics & Planetary Science |date=Jul 2019 |volume=54 |issue=9 |page=1930|bibcode=2019M&PS...54.1930G }}</ref> Note: lone CV2 specimen, Mundrabilla 012<ref>{{cite web |title=Meteoritical Bulletin: Entry for Mundrabilla 012 |url=https://www.lpi.usra.edu/meteor/metbull.php?code=16863 |website=Meteoritical Bulletin |publisher=The Meteoritical Society |accessdate=14 Sep 2019}}</ref><ref>{{cite web |title=Mundrabilla 012 meteorite, Mundrabilla Roadhouse, Dundas Shire, Western Australia, Australia |url=https://www.mindat.org/loc-297049.html |website=Mindat.org |accessdate=14 Sep 2019}}</ref>


====Chondrules and similar====
====Chondrules and similar====
Line 46: Line 46:
As Type 2 meteorites, CM chondrites have some remaining chondrules; others have been modified or dissolved by water. COs have more chondrules; CIs have either trace outlines of former chondrules ("pseudomorphs") or, some have argued, never contained any chondrules at all. Many CM chondrules are surrounded by either rims of accessory minerals, or haloes of water-altered chondrule material.<ref name="bunch78">{{cite conference |last1=Bunch |first1=T |last2=Chang |first2=S |title=Carbonaceous chondrite (CM) phyllosilicates: condensation or alteration origin? |bibcode=1978LPI.....9..134B |conference=Lunar and Planetary Science IX |date=1978 |page=134}}</ref><ref>{{cite book |last1=Metzler |first1=K |last2=Bischoff |first2=A |title=Chondrules and the Protoplanetary Disk, NASA-CR-197121 |date=Jan 1994 |page=23 |chapter=Constraints on chondrule agglomeration from fine-grained chondrule rims}}</ref>
As Type 2 meteorites, CM chondrites have some remaining chondrules; others have been modified or dissolved by water. COs have more chondrules; CIs have either trace outlines of former chondrules ("pseudomorphs") or, some have argued, never contained any chondrules at all. Many CM chondrules are surrounded by either rims of accessory minerals, or haloes of water-altered chondrule material.<ref name="bunch78">{{cite conference |last1=Bunch |first1=T |last2=Chang |first2=S |title=Carbonaceous chondrite (CM) phyllosilicates: condensation or alteration origin? |bibcode=1978LPI.....9..134B |conference=Lunar and Planetary Science IX |date=1978 |page=134}}</ref><ref>{{cite book |last1=Metzler |first1=K |last2=Bischoff |first2=A |title=Chondrules and the Protoplanetary Disk, NASA-CR-197121 |date=Jan 1994 |page=23 |chapter=Constraints on chondrule agglomeration from fine-grained chondrule rims}}</ref>


The chondrules of CM chondrites, though fewer, are larger than in COs. While CM chondrules are smaller than average in diameter (~300 micrometer), CO chondrules are exceptionally small (~170 um).<ref>{{cite journal |last1=Rubin |first1=A |title=Size‐frequency distributions of chondrules in CO3 chondrites |bibcode=1989Metic..24..179R |journal=Meteoritics |date=Sep 1989 |volume=24 |issue=3 |page=179}}</ref><ref>{{cite journal |last1=Choe |first1=W |last2=Huber |first2=H |last3=Rubin |first3=A |last4=Kallemeyn |first4=G |last5=Wasson |first5=J |title=Compositions and taxonomy of 15 unusual carbonaceous chondrites |bibcode=2010M&PS...45..531C |journal=Meteoritics & Planetary Science |date=Apr 2010 |volume=45 |page=531}}</ref> This may be a [[survivor bias]]: consider that the water which dissolves CM chondrules successfully eliminates those which are already small, while those which were large may remain to be observed, though with less of the original material.<ref>{{cite journal |last1=Rubin |first1=A |title=Correlated petrologic and geochemical characteristics of CO3 chondrites |bibcode=1998M&PS...33..385R |journal=Meteoritics & Planetary Science |date=May 1998 |volume=33 |page=385}}</ref> Similarly, CMs contain minor [[Calcium–aluminium-rich inclusion|CAIs]] (calcium-aluminium rich inclusions).<ref>{{cite journal |last1=Rubin |first1=A |title=Petrography of refractory inclusions in CM2.6 QUE 97990 and the origin of melilite‐free spinel inclusions in CM chondrites |bibcode=2007M&PS...42.1711R |journal=Meteoritics & Planetary Science |date=Oct 2007 |volume=42 |page=1711}}</ref><ref>{{cite journal |last1=Hezel |first1=D |last2=Russell |first2=S |last3=Ross |first3=A |last4=Kearsley |first4=A |title=Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations |bibcode=2008M&PS...43.1879H |journal=Meteoritics & Planetary Science |date=2008 |volume=43 |page=1879}}</ref>
The chondrules of CM chondrites, though fewer, are larger than in COs. While CM chondrules are smaller than average in diameter (~300 micrometer), CO chondrules are exceptionally small (~170 um).<ref>{{cite journal |last1=Rubin |first1=A |title=Size‐frequency distributions of chondrules in CO3 chondrites |bibcode=1989Metic..24..179R |journal=Meteoritics |date=Sep 1989 |volume=24 |issue=3 |page=179|doi=10.1111/j.1945-5100.1989.tb00960.x }}</ref><ref>{{cite journal |last1=Choe |first1=W |last2=Huber |first2=H |last3=Rubin |first3=A |last4=Kallemeyn |first4=G |last5=Wasson |first5=J |title=Compositions and taxonomy of 15 unusual carbonaceous chondrites |bibcode=2010M&PS...45..531C |journal=Meteoritics & Planetary Science |date=Apr 2010 |volume=45 |issue=4 |page=531|doi=10.1111/j.1945-5100.2010.01039.x }}</ref> This may be a [[survivor bias]]: consider that the water which dissolves CM chondrules successfully eliminates those which are already small, while those which were large may remain to be observed, though with less of the original material.<ref>{{cite journal |last1=Rubin |first1=A |title=Correlated petrologic and geochemical characteristics of CO3 chondrites |bibcode=1998M&PS...33..385R |journal=Meteoritics & Planetary Science |date=May 1998 |volume=33 |issue=2 |page=385|doi=10.1111/j.1945-5100.1998.tb01644.x }}</ref> Similarly, CMs contain minor [[Calcium–aluminium-rich inclusion|CAIs]] (calcium-aluminium rich inclusions).<ref>{{cite journal |last1=Rubin |first1=A |title=Petrography of refractory inclusions in CM2.6 QUE 97990 and the origin of melilite‐free spinel inclusions in CM chondrites |bibcode=2007M&PS...42.1711R |journal=Meteoritics & Planetary Science |date=Oct 2007 |volume=42 |issue=10 |page=1711|doi=10.1111/j.1945-5100.2007.tb00532.x }}</ref><ref>{{cite journal |last1=Hezel |first1=D |last2=Russell |first2=S |last3=Ross |first3=A |last4=Kearsley |first4=A |title=Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations |bibcode=2008M&PS...43.1879H |journal=Meteoritics & Planetary Science |date=2008 |volume=43 |issue=11 |page=1879|arxiv=0810.2174 |doi=10.1111/j.1945-5100.2008.tb00649.x }}</ref>


====Matrix====
====Matrix====


CM meteorites also contain fewer grains of olivine and pyroxene silicates than COs, but more than CIs. As with chondrules, these are water-susceptible, and follow the water progression of the petrographic scale. So, too, do grains of free metal. CO meteorites contain higher levels of free metal domains, where CIs have mostly oxidized theirs; CMs are in between.<ref>{{cite journal |last1=Barber |first1=D |title=The Matrix of C2 and C3 Carbonaceous Chondrites |bibcode=1977Metic..12..172B |journal=Meteoritics |date=1977 |volume=12 |page=172}}</ref><ref>{{cite journal |last1=Barber |first1=D |title=Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites |bibcode=1981GeCoA..45..945B |journal=Geochimica et Cosmochimica Acta |date=1981 |volume=45 |page=945}}</ref>
CM meteorites also contain fewer grains of olivine and pyroxene silicates than COs, but more than CIs. As with chondrules, these are water-susceptible, and follow the water progression of the petrographic scale. So, too, do grains of free metal. CO meteorites contain higher levels of free metal domains, where CIs have mostly oxidized theirs; CMs are in between.<ref>{{cite journal |last1=Barber |first1=D |title=The Matrix of C2 and C3 Carbonaceous Chondrites |bibcode=1977Metic..12..172B |journal=Meteoritics |date=1977 |volume=12 |page=172}}</ref><ref>{{cite journal |last1=Barber |first1=D |title=Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites |bibcode=1981GeCoA..45..945B |journal=Geochimica et Cosmochimica Acta |date=1981 |volume=45 |issue=6 |page=945|doi=10.1016/0016-7037(81)90120-4 }}</ref>


Both free metal, and grains of olivine/pyroxene, have been largely or predominantly altered to matrix materials. A CM meteorite will consist of more matrix than a CO, but less than a CI (which are essentially all matrix, per Van Schmus & Wood 1967).<ref>{{cite journal |last1=Wood |first1=J |bibcode=1967GeCoA..31.2095W |journal=Geochimica et Cosmochimica Acta |date=Oct 1967 |volume=31 |page=2095}}</ref>
Both free metal, and grains of olivine/pyroxene, have been largely or predominantly altered to matrix materials. A CM meteorite will consist of more matrix than a CO, but less than a CI (which are essentially all matrix, per Van Schmus & Wood 1967).<ref>{{cite journal |last1=Wood |first1=J |title=Olivine and pyroxene compositions in type II carbonaceous chondrites |bibcode=1967GeCoA..31.2095W |journal=Geochimica et Cosmochimica Acta |date=Oct 1967 |volume=31 |issue=10 |page=2095|doi=10.1016/0016-7037(67)90144-5 }}</ref>


====Sub-Classification====
====Sub-Classification====


The CM group is both numerous and diverse. Multiple attempts have been made to subdivide the group beyond the Van Schmus-Wood typing. McSween 1979 was an early proposal.<ref name=mcsween>{{cite journal |last1=McSween |first1=H |title=Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix |bibcode=1979GeCoA..43.1761M |journal=Geochimica et Cosmochimica Acta |date=1979 |volume=43 |page=1761}}</ref> After him, these add a suffix after the petrologic type, with 'CM2.9' referring to less-altered, CO-like specimens, and 'CM2.0' being more-altered, CI-like meteorites. (As of recently, no true 2.9 specimens have been catalogued.)
The CM group is both numerous and diverse. Multiple attempts have been made to subdivide the group beyond the Van Schmus-Wood typing. McSween 1979 was an early proposal.<ref name=mcsween>{{cite journal |last1=McSween |first1=H |title=Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix |bibcode=1979GeCoA..43.1761M |journal=Geochimica et Cosmochimica Acta |date=1979 |volume=43 |issue=11 |page=1761|doi=10.1016/0016-7037(79)90024-3 }}</ref> After him, these add a suffix after the petrologic type, with 'CM2.9' referring to less-altered, CO-like specimens, and 'CM2.0' being more-altered, CI-like meteorites. (As of recently, no true 2.9 specimens have been catalogued.)


'''McSween 1979''' graded the amount of matrix versus total amount, and the depletion of iron in the matrix, to quantify higher degrees of alteration.<ref name=mcsween/>
'''McSween 1979''' graded the amount of matrix versus total amount, and the depletion of iron in the matrix, to quantify higher degrees of alteration.<ref name=mcsween/>


'''Browning et al. 1996''' devised a formula ("MAI," Mineralogical Alteration Index), quantified the amount of unaltered silicate grains, and graded the alteration level of chondrules to quantify alteration.<ref name="browning">{{cite journal |last1=Browning |first1=L |last2=McSween |first2=H |last3=Zolensky |first3=M |title=Correlated alteration effects in CM carbonaceous chondrites |bibcode=1996GeCoA..60.2621B |journal=Geochimica et Cosmochimica Acta |date=1996 |volume=60 |page=2621}}</ref>
'''Browning et al. 1996''' devised a formula ("MAI," Mineralogical Alteration Index), quantified the amount of unaltered silicate grains, and graded the alteration level of chondrules to quantify alteration.<ref name="browning">{{cite journal |last1=Browning |first1=L |last2=McSween |first2=H |last3=Zolensky |first3=M |title=Correlated alteration effects in CM carbonaceous chondrites |bibcode=1996GeCoA..60.2621B |journal=Geochimica et Cosmochimica Acta |date=1996 |volume=60 |issue=14 |page=2621|doi=10.1016/0016-7037(96)00121-4 }}</ref>


'''Rubin et al. 2007''' added measurement of carbonates, with more dolomite and less calcite indicating higher alteration.<ref name="rubintrigo>{{cite journal |last1=Rubin |first1=A |last2=Trigo-Rodriguez |first2=J |last3=Huber |first3=H |last4=Wasson |first4=J |title=Progressive aqueous alterations of CM carbonaceous chondrites |bibcode=2007GeCoA..71.2361R |journal=Geochimica et Cosmochimica Acta |date=2007 |volume=71 |issue=9 |page=2361}}</ref>
'''Rubin et al. 2007''' added measurement of carbonates, with more dolomite and less calcite indicating higher alteration.<ref name="rubintrigo>{{cite journal |last1=Rubin |first1=A |last2=Trigo-Rodriguez |first2=J |last3=Huber |first3=H |last4=Wasson |first4=J |title=Progressive aqueous alterations of CM carbonaceous chondrites |bibcode=2007GeCoA..71.2361R |journal=Geochimica et Cosmochimica Acta |date=2007 |volume=71 |issue=9 |page=2361|doi=10.1016/j.gca.2007.02.008 }}</ref>


'''Howard et al. 2009, 2011''' measured total abundance of phyllosilicates to quantify alteration.<ref>{{cite journal |last1=Howard |first1=K |last2=Benedix |first2=G |last3=Bland |first3=P |last4=Cressey |first4=G |title=Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration |bibcode=2009GeCoA..73.4576H |journal=Geochimica et Cosmochimica Acta |date=Aug 2009 |volume=73 |page=4576}}</ref><ref name="howard11"/>
'''Howard et al. 2009, 2011''' measured total abundance of phyllosilicates to quantify alteration.<ref>{{cite journal |last1=Howard |first1=K |last2=Benedix |first2=G |last3=Bland |first3=P |last4=Cressey |first4=G |title=Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration |bibcode=2009GeCoA..73.4576H |journal=Geochimica et Cosmochimica Acta |date=Aug 2009 |volume=73 |issue=15 |page=4576|doi=10.1016/j.gca.2009.04.038 }}</ref><ref name="howard11"/>


'''Alexander et al. 2012, 2013''' measured deuterium level, C/H, and nitrogen isotopes to quantify alteration.<ref>{{cite conference |last1=Alexander |first1=C |last2=Bowden |first2=R |last3=Fogel |first3=M |last4=Howard |first4=K |last5=Greenwood |first5=R |title=The Classification of CM and CR Chondrites Using Bulk H Abundances and Isotopes |conference=43rd LPSC |date=Mar 2012 |issue=1659}}</ref><ref>{{cite journal |last1=Alexander |first1=C |last2=Howard |first2=K |last3=Bowden |first3=R |last4=Fogel |first4=M |title=The classification of CM and CR chondrites using bulk H, C N abundances and isotopic compositions |journal=Geochimica et Cosmochimica Acta |date=2013 |bibcode=2013GeCoA.123..244A|volume=123 |page=244}}</ref>
'''Alexander et al. 2012, 2013''' measured deuterium level, C/H, and nitrogen isotopes to quantify alteration.<ref>{{cite conference |last1=Alexander |first1=C |last2=Bowden |first2=R |last3=Fogel |first3=M |last4=Howard |first4=K |last5=Greenwood |first5=R |title=The Classification of CM and CR Chondrites Using Bulk H Abundances and Isotopes |conference=43rd LPSC |date=Mar 2012 |issue=1659}}</ref><ref>{{cite journal |last1=Alexander |first1=C |last2=Howard |first2=K |last3=Bowden |first3=R |last4=Fogel |first4=M |title=The classification of CM and CR chondrites using bulk H, C N abundances and isotopic compositions |journal=Geochimica et Cosmochimica Acta |date=2013 |bibcode=2013GeCoA.123..244A|volume=123 |page=244|doi=10.1016/j.gca.2013.05.019 }}</ref>


====Transitional examples====
====Transitional examples====
Line 72: Line 72:
CM-CO
CM-CO


* [[Paris meteorite|Paris]]- described as "the least altered CM chondrite so far"<ref>{{cite journal |last1=Hewins |first1=R |last2=Bourot-Denise |first2=M |display-authors=et al |title=The Paris meteorite, the least altered CM chondrite so far |bibcode=2014GeCoA.124..190H |journal=Geochimica et Cosmochimica Acta |date=Jan 2014 |volume=124 |page=190 |doi=10.1016/j.gca.2013.09.014}}</ref> "that bridges the gap between CMs and COs"<ref>{{cite journal |last1=Bourot-Denism |first1=M |last2=Zanda |first2=B |last3=Marrocchi |first3=Y |last4=Greenwood |first4=R |last5=Pont |first5=S |title=Paris: The slightly altered, slightly metamorphosed CM that bridges the gap between CMs and COs |bibcode=2010LPI....41.1683B |journal=41st LPSC |date=Mar 2010 |issue=1683}}</ref>
* [[Paris meteorite|Paris]]- described as "the least altered CM chondrite so far"<ref>{{cite journal |last1=Hewins |first1=R |last2=Bourot-Denise |first2=M |display-authors=et al |title=The Paris meteorite, the least altered CM chondrite so far |bibcode=2014GeCoA.124..190H |journal=Geochimica et Cosmochimica Acta |date=Jan 2014 |volume=124 |page=190 |doi=10.1016/j.gca.2013.09.014}}</ref> "that bridges the gap between CMs and COs"<ref>{{cite journal |last1=Bourot-Denism |first1=M |last2=Zanda |first2=B |last3=Marrocchi |first3=Y |last4=Greenwood |first4=R |last5=Pont |first5=S |title=Paris: The slightly altered, slightly metamorphosed CM that bridges the gap between CMs and COs |bibcode=2010LPI....41.1683B |journal=41st LPSC |date=Mar 2010 |issue=1683|pages=1683 }}</ref>
* ALHA77307
* ALHA77307
* [[Adelaide meteorite|Adelaide]]
* [[Adelaide meteorite|Adelaide]]
Line 88: Line 88:
==Chemistry==
==Chemistry==


Carbonaceous chondrites, as the name suggests, contain appreciable carbon compounds.<ref name="pearson">{{cite journal |last1=Pearson |first1=V |last2=Sephton |first2=M |last3=Franchi |first3=I |last4=Gibson |first4=J |last5=Gilmour |first5=I |title=Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions |bibcode=2006M&PS...41.1899P |journal=Meteoritics & Planetary Science |date=Jan 2010 |volume=41 |issue=12 |page=1899}}</ref> These include native carbon, simple compounds like metal carbides and carbonates, organic chains, and polycyclic aromatic hydrocarbons (PAHs).
Carbonaceous chondrites, as the name suggests, contain appreciable carbon compounds.<ref name="pearson">{{cite journal |last1=Pearson |first1=V |last2=Sephton |first2=M |last3=Franchi |first3=I |last4=Gibson |first4=J |last5=Gilmour |first5=I |title=Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions |bibcode=2006M&PS...41.1899P |journal=Meteoritics & Planetary Science |date=Jan 2010 |volume=41 |issue=12 |page=1899|doi=10.1111/j.1945-5100.2006.tb00459.x }}</ref> These include native carbon, simple compounds like metal carbides and carbonates, organic chains, and polycyclic aromatic hydrocarbons (PAHs).


The elemental abundances of some C-chondrite groups (with the obvious exception of [[hydrogen]], [[helium]], and some other elements, see below)<ref>{{cite journal |last1=Holweger |first1=H |title=The solar Na/Ca and S/Ca ratios: A close comparison with carbonaceous chondrites |doi=10.1016/0012-821X(77)90116-9 |journal=Earth and Planetary Science Letters |date=Feb 1977 |volume=34 |page=152}}</ref><ref>{{cite journal |last1=Anders |first1=E |last2=Ebihara |first2=M |title=Solar-system abundances of the elements |bibcode=2014pacs.book...15P |journal=Geochimica et Cosmochimica Acta |date=Nov 1982 |volume=46 |page=2363}}</ref> have long been known to resemble solar abundance values.<ref>{{cite journal |last1=Suess |first1=H |title=Die kosmische häufigkeit der chemischen elemente |doi=10.1007/BF02149939 |journal=Experientia |date=1949 |volume=7 |page=266}}</ref><ref>{{cite journal |last1=Suess |first1=H Urey H |title=Abundances of the Elements |doi=10.1103/RevModPhys.28.53 |journal=Rev. Mod. Phys. |date=Jan 1956 |volume=28 |page=53}}</ref><ref>{{cite journal |last1=Asplund |first1=M |last2=Grevesse |first2=N |last3=Sauval |first3=AJ |last4=Scott |first4=P |title=The chemical composition of the Sun |doi=10.1146/annurev.astro.46.060407.145222 |journal=Annual Reviews of Astronomy and Astrophysics |date=2009 |volume=47 |page=481}}</ref> The CI chondrites, in particular, correspond "quite closely, more so than does any other type of meteoric or terrestrial matter";<ref>{{cite journal |last1=Anders |first1=E |title=Origin, age, and composition of meteorites |doi=10.1007/BF00177954 |journal=Space Science Reviews |date=Dec 1964 |volume=3 |page=5}}</ref> called "somewhat miraculous".<ref name="weisberg"/> Of course, only [[gas giant]] planets have the mass to retain, explicitly, hydrogen and helium. This extends to most [[noble gases]], and to lesser amounts the elements N, O and C, the [[Atmophile|atmophiles]]. Other elements- volatiles and refractories- have correspondences between CI chondrites and the solar photosphere and solar wind such that the CI group is used as a [[Cosmochemistry|cosmochemical]] standard.<ref name="lodders">{{cite book |editor-last1=Goswami |editor-first1=A |editor-last2=Eswar Reddy |editor-first2=B|title=Principles and Perspectives in Cosmochemistry: Lecture Notes of the Kodai School on 'Synthesis of Elements in Stars' held at Kodaikanal Observatory, India, April 29 - May 13, 2008 |date=2010 |publisher=Springer-Verlag |location=Heidelberg |isbn=978-3-642-10351-3 |page=379 |chapter=Solar system abundances of the elements}}</ref><ref name="palmeloddersjones">{{cite book |last1=Davis |first1=A |title=Planets, Asteriods, Comets and The Solar System, Treatise on Geochemistry, Vol. 2 |date=2014 |publisher=Elsevier |isbn=978-0080999432 |page=21 |edition=2nd |chapter=Solar System Abundances of the Elements}}</ref> As the Sun is 99% of the mass of the Solar System, knowing the solar abundance is the starting point for any other part or process of this System.
The elemental abundances of some C-chondrite groups (with the obvious exception of [[hydrogen]], [[helium]], and some other elements, see below)<ref>{{cite journal |last1=Holweger |first1=H |title=The solar Na/Ca and S/Ca ratios: A close comparison with carbonaceous chondrites |doi=10.1016/0012-821X(77)90116-9 |journal=Earth and Planetary Science Letters |date=Feb 1977 |volume=34 |issue=1 |page=152|bibcode=1977E&PSL..34..152H }}</ref><ref>{{cite journal |last1=Anders |first1=E |last2=Ebihara |first2=M |title=Solar-system abundances of the elements |bibcode=2014pacs.book...15P |journal=Geochimica et Cosmochimica Acta |date=Nov 1982 |volume=46 |issue=11 |page=2363|doi=10.1016/0016-7037(82)90208-3 }}</ref> have long been known to resemble solar abundance values.<ref>{{cite journal |last1=Suess |first1=H |title=Die kosmische häufigkeit der chemischen elemente |doi=10.1007/BF02149939 |pmid=18146573 |journal=Experientia |date=1949 |volume=5 |issue=7 |pages=266–70 }}</ref><ref>{{cite journal |last1=Suess |first1=H Urey H |title=Abundances of the Elements |doi=10.1103/RevModPhys.28.53 |journal=Rev. Mod. Phys. |date=Jan 1956 |volume=28 |issue=1 |page=53|bibcode=1956RvMP...28...53S }}</ref><ref>{{cite journal |last1=Asplund |first1=M |last2=Grevesse |first2=N |last3=Sauval |first3=AJ |last4=Scott |first4=P |title=The chemical composition of the Sun |doi=10.1146/annurev.astro.46.060407.145222 |journal=Annual Reviews of Astronomy and Astrophysics |date=2009 |volume=47 |issue=1 |pages=481–522 |bibcode=2009ARA&A..47..481A |arxiv=0909.0948 }}</ref> The CI chondrites, in particular, correspond "quite closely, more so than does any other type of meteoric or terrestrial matter";<ref>{{cite journal |last1=Anders |first1=E |title=Origin, age, and composition of meteorites |doi=10.1007/BF00177954 |journal=Space Science Reviews |date=Dec 1964 |volume=3 |issue=5–6 |page=5|bibcode=1964SSRv....3..583A }}</ref> called "somewhat miraculous".<ref name="weisberg"/> Of course, only [[gas giant]] planets have the mass to retain, explicitly, hydrogen and helium. This extends to most [[noble gases]], and to lesser amounts the elements N, O and C, the [[Atmophile|atmophiles]]. Other elements- volatiles and refractories- have correspondences between CI chondrites and the solar photosphere and solar wind such that the CI group is used as a [[Cosmochemistry|cosmochemical]] standard.<ref name="lodders">{{cite book |editor-last1=Goswami |editor-first1=A |editor-last2=Eswar Reddy |editor-first2=B|title=Principles and Perspectives in Cosmochemistry: Lecture Notes of the Kodai School on 'Synthesis of Elements in Stars' held at Kodaikanal Observatory, India, April 29 - May 13, 2008 |date=2010 |publisher=Springer-Verlag |location=Heidelberg |isbn=978-3-642-10351-3 |page=379 |chapter=Solar system abundances of the elements}}</ref><ref name="palmeloddersjones">{{cite book |last1=Davis |first1=A |title=Planets, Asteriods, Comets and The Solar System, Treatise on Geochemistry, Vol. 2 |date=2014 |publisher=Elsevier |isbn=978-0080999432 |page=21 |edition=2nd |chapter=Solar System Abundances of the Elements}}</ref> As the Sun is 99% of the mass of the Solar System, knowing the solar abundance is the starting point for any other part or process of this System.


The solar correspondence is similar but weaker in CM chondrites. More-volatile elements have been somewhat depleted relative to the CIs, and more-refractory elements somewhat enriched.<ref name="kallemeynwassoni"/><ref name="lodders"/><ref name="palmeloddersjones"/>
The solar correspondence is similar but weaker in CM chondrites. More-volatile elements have been somewhat depleted relative to the CIs, and more-refractory elements somewhat enriched.<ref name="kallemeynwassoni"/><ref name="lodders"/><ref name="palmeloddersjones"/>


A small amount<ref>{{cite conference |last1=Leitner |first1=J |last2=Hoppe |first2=P |last3=Metzler |first3=K |last4=Haenecour |first4=P |last5=Floss |first5=C |last6=Vollmer |first6=C |title=The Presolar Grain Inventory Of CM Chondrites |bibcode=2015LPICo1856.5178L |conference=78th Meteoritical Society Meeting |date=2015 |issue=5178}}</ref> of meteorite materials are small [[presolar grains]] (PSGs).<ref>{{cite journal |last1=Huss |first1=G |last2=Meshik |first2=A |last3=Smith |first3=J |last4=Hohenberg |first4=C |title=Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula |doi=10.1016/j.gca.2003.07.019 |journal=Geochimica et Cosmochimica Acta |date=Dec 2003 |volume=67 |page=4823}}</ref><ref>{{cite journal |last1=Zinner |first1=E |last2=Amari |first2=S |last3=Guinness |first3=R |last4=Nguyen |first4=A |title=Presolar spinel grains from the Murray and Murchison carbonaceous chondrites |doi=10.1016/S0016-7037(03)00261-8 |journal=Geochimica et Cosmochimica Acta |date=Dec 2003 |volume=67 |page=5083}}</ref> These are crystals of material which survives from interstellar space, since before the formation of the Solar System. PSGs include silicon carbide ("[[Moissanite]]")<ref>{{cite journal |last1=Moissan |first1=H |title=Investigation of the Canon Diablo Meteorite |journal=Comptes Rendu. de l'Acad. Sci. Paris |date=1904 |volume=139 |page=773}}</ref> and micro-diamonds,<ref>{{cite journal |last1=Ksanda |first1=C |last2=Henderson |first2=E |title=Identification of diamond in the Canyon Diablo iron |journal=American Mineralogist |date=1939 |volume=24 |page=677}}</ref> as well as other refractory minerals such as corundum and zircon.<ref>{{cite journal |last1=Laspeyres |first1=H |last2=Kaiser |first2=E |title=Quartz and Zerkonkrystall im Meteoreisen Toluca von Mexico |journal=Zeitschrift fur Krystallographie und Mineralogie |date=1895 |volume=24 |page=485}}</ref> The isotope levels of their elements do not match solar system levels, instead being closer to e. g., the interstellar medium.
A small amount<ref>{{cite conference |last1=Leitner |first1=J |last2=Hoppe |first2=P |last3=Metzler |first3=K |last4=Haenecour |first4=P |last5=Floss |first5=C |last6=Vollmer |first6=C |title=The Presolar Grain Inventory Of CM Chondrites |bibcode=2015LPICo1856.5178L |conference=78th Meteoritical Society Meeting |date=2015 |issue=5178}}</ref> of meteorite materials are small [[presolar grains]] (PSGs).<ref>{{cite journal |last1=Huss |first1=G |last2=Meshik |first2=A |last3=Smith |first3=J |last4=Hohenberg |first4=C |title=Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula |doi=10.1016/j.gca.2003.07.019 |journal=Geochimica et Cosmochimica Acta |date=Dec 2003 |volume=67 |issue=24 |page=4823|bibcode=2003GeCoA..67.4823H }}</ref><ref>{{cite journal |last1=Zinner |first1=E |last2=Amari |first2=S |last3=Guinness |first3=R |last4=Nguyen |first4=A |title=Presolar spinel grains from the Murray and Murchison carbonaceous chondrites |doi=10.1016/S0016-7037(03)00261-8 |journal=Geochimica et Cosmochimica Acta |date=Dec 2003 |volume=67 |issue=24 |page=5083|bibcode=2003GeCoA..67.5083Z }}</ref> These are crystals of material which survives from interstellar space, since before the formation of the Solar System. PSGs include silicon carbide ("[[Moissanite]]")<ref>{{cite journal |last1=Moissan |first1=H |title=Investigation of the Canon Diablo Meteorite |journal=Comptes Rendu. De l'Acad. Sci. Paris |date=1904 |volume=139 |page=773}}</ref> and micro-diamonds,<ref>{{cite journal |last1=Ksanda |first1=C |last2=Henderson |first2=E |title=Identification of diamond in the Canyon Diablo iron |journal=American Mineralogist |date=1939 |volume=24 |page=677}}</ref> as well as other refractory minerals such as corundum and zircon.<ref>{{cite journal |last1=Laspeyres |first1=H |last2=Kaiser |first2=E |title=Quartz and Zerkonkrystall im Meteoreisen Toluca von Mexico |journal=Zeitschrift fur Krystallographie und Mineralogie |date=1895 |volume=24 |page=485}}</ref> The isotope levels of their elements do not match solar system levels, instead being closer to e. g., the interstellar medium.


As with other meteorite classes, some carbon content is as carbides (often [[Cohenite]], Fe<sub>3</sub>C with [[Meteoritic iron|e.g., nickel substitutions]])<ref>{{cite journal |last1=Brett |first1=R |title=Cohenite: its occurrence and a proposed origin |bibcode=1967GeCoA..31..143B |journal=Geochimica et Cosmochimica Acta |date=1967 |volume=31 |page=143}}</ref> and carbonates such as [[calcite]] and [[dolomite (mineral)|dolomite]].<ref>{{cite journal |last1=Nagy |first1=B |last2=Andersen |first2=C |title=Electron probe microanalysis of some carbonate, sulfate and phosphate minerals in the Orgueil meteorite |journal=American Mineralogist |date=1964 |volume=49 |page=1730}}</ref><ref>{{cite conference |last1=Sofe |first1=M |last2=Lee |first2=M |last3=Lindgren |first3=P |last4=Smith |first4=C |title=CL Zoning of Calcite in CM Carbonaceous Chondrites and its Relationship to Degree of Aqueous Alteration |conference=74th Meteoritical Society Meeting |date=2011 |issue=5392}}</ref><ref>{{cite journal |last1=de Leuw |first1=S |last2=Rubin |first2=A |last3=Wasson |first3=J |title=Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites |doi=10.1111/j.1945-5100.2010.01037.x |journal=Meteoritics & Planetary Science |date=Jul 2010 |volume=45 |page=513}}</ref> [[Aragonite]] appears, where CIs contain little or none.<ref>{{cite journal |last1=Lee |first1=M |last2=Lindgren |first2=P |last3=Sofe |first3=M |title=Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration |doi=10.1016/j.gca.2014.08.019 |journal=Geochimica et Cosmochimica Acta |date=Nov 2014 |volume=144 |page=126}}</ref>
As with other meteorite classes, some carbon content is as carbides (often [[Cohenite]], Fe<sub>3</sub>C with [[Meteoritic iron|e.g., nickel substitutions]])<ref>{{cite journal |last1=Brett |first1=R |title=Cohenite: its occurrence and a proposed origin |bibcode=1967GeCoA..31..143B |journal=Geochimica et Cosmochimica Acta |date=1967 |volume=31 |issue=2 |page=143|doi=10.1016/S0016-7037(67)80042-5 }}</ref> and carbonates such as [[calcite]] and [[dolomite (mineral)|dolomite]].<ref>{{cite journal |last1=Nagy |first1=B |last2=Andersen |first2=C |title=Electron probe microanalysis of some carbonate, sulfate and phosphate minerals in the Orgueil meteorite |journal=American Mineralogist |date=1964 |volume=49 |page=1730}}</ref><ref>{{cite conference |last1=Sofe |first1=M |last2=Lee |first2=M |last3=Lindgren |first3=P |last4=Smith |first4=C |title=CL Zoning of Calcite in CM Carbonaceous Chondrites and its Relationship to Degree of Aqueous Alteration |conference=74th Meteoritical Society Meeting |date=2011 |issue=5392}}</ref><ref>{{cite journal |last1=de Leuw |first1=S |last2=Rubin |first2=A |last3=Wasson |first3=J |title=Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites |doi=10.1111/j.1945-5100.2010.01037.x |journal=Meteoritics & Planetary Science |date=Jul 2010 |volume=45 |issue=4 |page=513|bibcode=2010M&PS...45..513D }}</ref> [[Aragonite]] appears, where CIs contain little or none.<ref>{{cite journal |last1=Lee |first1=M |last2=Lindgren |first2=P |last3=Sofe |first3=M |title=Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration |doi=10.1016/j.gca.2014.08.019 |journal=Geochimica et Cosmochimica Acta |date=Nov 2014 |volume=144 |page=126|bibcode=2014GeCoA.144..126L }}</ref>


Total carbon compounds in CM chondrites are lower than in CI chondrites; however, more are aromatics.<ref>{{cite journal |last1=Cody |first1=G |last2=Alexander |first2=C |title=NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups |doi=10.1016/j.gca.2004.08.031 |journal=Geochimica et Cosmochimica Acta |date=Feb 2005 |volume=69 |page=1085}}</ref> Isotope profiling indicates these are meteoritic, not terrestrial.<ref>{{cite journal |last1=Cronin |first1=J Pizzarello S |last2=Frye |first2=J |title=13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites |bibcode=1982Metic..17..200C |journal=Geochimica et Cosmochimica Acta |date=Feb 1987 |volume=51 |page=299}}</ref>
Total carbon compounds in CM chondrites are lower than in CI chondrites; however, more are aromatics.<ref>{{cite journal |last1=Cody |first1=G |last2=Alexander |first2=C |title=NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups |doi=10.1016/j.gca.2004.08.031 |journal=Geochimica et Cosmochimica Acta |date=Feb 2005 |volume=69 |issue=4 |page=1085|bibcode=2005GeCoA..69.1085C }}</ref> Isotope profiling indicates these are meteoritic, not terrestrial.<ref>{{cite journal |last1=Cronin |first1=J Pizzarello S |last2=Frye |first2=J |title=13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites |bibcode=1982Metic..17..200C |journal=Geochimica et Cosmochimica Acta |date=Feb 1987 |volume=51 |issue=2 |page=299|doi=10.1016/0016-7037(87)90242-0 }}</ref>


The organics of C-chondrites divide into soluble, and IOM (Insoluble Organic Matter). The soluble fraction would yield to the chemistry techniques of the mid-20th century,<ref>{{cite journal |last1=Easton |first1=A |last2=Lovering |first2=J |title=The analysis of chondritic meteorites |doi=10.1016/0016-7037(63)90040-1 |journal=Geochimica et Cosmochimica Acta |date=1963 |volume=27 |page=753}}</ref><ref>{{cite journal |last1=Moss |first1=A |last2=Hey |first2=M |last3=Elliott |first3=C |last4=Easton |first4=A |title=Methods for the Chemical Analysis of Meteorites II: The major and some minor constituents of chondrites |doi=10.1180/minmag.1967.036.277.17 |journal=Mineralogical Magazine |date=Mar 1967 |volume=36 |page=101}}</ref> giving paraffin, naphthene and aromatics, with other contributions.<ref name="briggsmamikunian">{{cite journal |last1=Briggs |first1=M |last2=Mamikunian |first2=G |title=Organic Constituents of the Carbonaceous Chondrites |doi=10.1007/BF00212447 |journal=Space Science Reviews |date=May 1963 |volume=1 |page=647}}</ref>
The organics of C-chondrites divide into soluble, and IOM (Insoluble Organic Matter). The soluble fraction would yield to the chemistry techniques of the mid-20th century,<ref>{{cite journal |last1=Easton |first1=A |last2=Lovering |first2=J |title=The analysis of chondritic meteorites |doi=10.1016/0016-7037(63)90040-1 |journal=Geochimica et Cosmochimica Acta |date=1963 |volume=27 |issue=7 |page=753|bibcode=1963GeCoA..27..753E }}</ref><ref>{{cite journal |last1=Moss |first1=A |last2=Hey |first2=M |last3=Elliott |first3=C |last4=Easton |first4=A |title=Methods for the Chemical Analysis of Meteorites II: The major and some minor constituents of chondrites |doi=10.1180/minmag.1967.036.277.17 |journal=Mineralogical Magazine |date=Mar 1967 |volume=36 |issue=277 |page=101|bibcode=1967MinM...36..101M }}</ref> giving paraffin, naphthene and aromatics, with other contributions.<ref name="briggsmamikunian">{{cite journal |last1=Briggs |first1=M |last2=Mamikunian |first2=G |title=Organic Constituents of the Carbonaceous Chondrites |doi=10.1007/BF00212447 |journal=Space Science Reviews |date=May 1963 |volume=1 |issue=4 |page=647|bibcode=1963SSRv....1..647B }}</ref>
The IOM is, however, the clear majority of the organic component; in 1963, Briggs and Mamikunian could only give it as "very high molecular weight". IOM itself divides into two components: thermally labile, and refractory.<ref>{{cite journal |last1=Remusat |first1=L |last2=Le Guillou |first2=C |last3=Rouzaud |first3=J |last4=Binet |first4=L |last5=Derenne |first5=S |last6=Robert |first6=F |title=Molecular study of insoluble organic matter in Kainsaz CO3 carbonaceous chondrite: Comparison with CI and CM IOM |doi=10.1111/j.1945-5100.2008.tb01115.x |journal=Meteoritics & Planetary Science |date=Jan 2007 |volume=43 |page=1099}}</ref>
The IOM is, however, the clear majority of the organic component; in 1963, Briggs and Mamikunian could only give it as "very high molecular weight". IOM itself divides into two components: thermally labile, and refractory.<ref>{{cite journal |last1=Remusat |first1=L |last2=Le Guillou |first2=C |last3=Rouzaud |first3=J |last4=Binet |first4=L |last5=Derenne |first5=S |last6=Robert |first6=F |title=Molecular study of insoluble organic matter in Kainsaz CO3 carbonaceous chondrite: Comparison with CI and CM IOM |doi=10.1111/j.1945-5100.2008.tb01115.x |journal=Meteoritics & Planetary Science |date=Jan 2007 |volume=43 |issue=7 |page=1099}}</ref>


====Amino acids====
====Amino acids====


Amino acids and other organics were first reported by multiple groups;<ref>{{cite journal |last1=Degens |first1=E |last2=Bajor |first2=M |title=Amino acids and sugars in the bruderheim and Murray meteorite |doi=10.1007/BF01178050 |journal=Die Naturwissenschaften |date=1963 |volume=49 |page=605}}</ref><ref>{{cite journal |last1=Kaplan |first1=I |last2=Degens |first2=E |last3=Reuter |first3=J |title=Organic compounds in stony meteorites |doi=10.1016/0016-7037(63)90045-0 |journal=Geochimica et Cosmochimica Acta |date=Jul 1963 |volume=27 |page=805}}</ref> however, concentrations were low to undetectable,<ref>{{cite book |editor-last1=Kallman Bijl |editor-first1=H |title=Space Research |date=1960 |publisher=North-Holland Publishing Company |location=Amsterdam |page=1171 |chapter=Extraterrestrial Life: Some Organic Constituents of Meteorites}}</ref><ref>{{cite journal |last1=Briggs |first1=M |title=Organic constituents of meteorites |doi=10.1038/1911137a0 |journal=Nature |date=1961 |volume=191 |page=1137}}</ref> and claimed to be terrestrial contamination.<ref>{{cite journal |last1=Hamilton |first1=P. B. |title=Amino acids on hands |doi=10.1038/205284b0 |journal=Nature |date=1965 |volume=205 |page=284}}</ref><ref>{{cite journal |last1=Oró |first1=J |last2=Skewes |first2=H |title=Free Amino-Acids on Human Fingers: The Question of Contamination in Microanalysis |doi=10.1038/2071042a0 |journal=Nature |date=1965 |volume=207 |page=1042}}</ref> The 1969 fall of the Murchison meteorite provided over 100 kg of sample, the largest CM ever. Specimens were recovered quickly, from a dry area. Combined with progress in, e.g., biochemistry and petrochemistry techniques, the question could be addressed more definitively: sugars<ref>{{cite journal |last1=Nuevo |first1=M |last2=Cooper |first2=G |last3=Sandford |first3=S |title=Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites |doi=10.1038/s41467-018-07693-x |journal=Nature Communications |date=2018 |volume=9 |page=5276}}</ref> and amino acids<ref>{{cite journal |last1=Kvenvolden |first1=K |last2=Lawless |first2=J |last3=Pering |first3=K |last4=Peterson |first4=E |last5=Flores |first5=J |last6=Ponnamperuma |first6=C |title=Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite |doi=10.1038/228923a0 |journal=Nature |date=Dec 1970 |volume=228 |page=923}}</ref><ref>{{cite journal |last1=Oró |first1=J |last2=Gibert |first2=J |last3=Lichtenstein |first3=H |last4=Wikstrom |first4=S |last5=Flory |first5=D |title=Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite |doi=10.1038/230105a0 |journal=Nature |date=Mar 1971 |volume=230 |page=105}}</ref> existed in space, via meteorites. This includes non-terrestrial amino acids.<ref>{{cite journal |last1=Koga |first1=T |first2=Naraoka |last2=H |title=A new family of extraterrestrial amino acids in the Murchison meteorite |doi=10.1038/s41598-017-00693-9 |journal=Nature Scientific Reports |date=Apr 2017 |volume=7 |page=636}}</ref> Multiple isotopes do not match Earth levels, strong evidence for non-contamination.<ref name=engel1997>{{cite journal |last1=Engel |first1=M |last2=Macko |first2=S |title=Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite |doi=10.1038/38460 |journal=Nature |date=Sep 1997 |volume=389 |page=265}}</ref><ref>{{cite journal |last1=Elsila |first1=J |last2=Charnley |first2=S |last3=Burton |first3=A |last4=Glavin |first4=D |last5=Dworkin |first5=J |title=Compound‐specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways |doi=10.1111/j.1945-5100.2012.01415.x |journal=M |date=Sep 2012 |volume=47 |page=1517}}</ref>
Amino acids and other organics were first reported by multiple groups;<ref>{{cite journal |last1=Degens |first1=E |last2=Bajor |first2=M |title=Amino acids and sugars in the bruderheim and Murray meteorite |doi=10.1007/BF01178050 |journal=Die Naturwissenschaften |date=1963 |volume=49 |issue=24 |page=605}}</ref><ref>{{cite journal |last1=Kaplan |first1=I |last2=Degens |first2=E |last3=Reuter |first3=J |title=Organic compounds in stony meteorites |doi=10.1016/0016-7037(63)90045-0 |journal=Geochimica et Cosmochimica Acta |date=Jul 1963 |volume=27 |issue=7 |page=805|bibcode=1963GeCoA..27..805K }}</ref> however, concentrations were low to undetectable,<ref>{{cite book |editor-last1=Kallman Bijl |editor-first1=H |title=Space Research |date=1960 |publisher=North-Holland Publishing Company |location=Amsterdam |page=1171 |chapter=Extraterrestrial Life: Some Organic Constituents of Meteorites}}</ref><ref>{{cite journal |last1=Briggs |first1=M |title=Organic constituents of meteorites |doi=10.1038/1911137a0 |journal=Nature |date=1961 |volume=191 |issue=4794 |page=1137|bibcode=1961Natur.191.1137B }}</ref> and claimed to be terrestrial contamination.<ref>{{cite journal |last1=Hamilton |first1=P. B. |title=Amino acids on hands |doi=10.1038/205284b0 |pmid=14270714 |journal=Nature |date=1965 |volume=205 |issue=4968 |pages=284–5 |bibcode=1965Natur.205..284H }}</ref><ref>{{cite journal |last1=Oró |first1=J |last2=Skewes |first2=H |title=Free Amino-Acids on Human Fingers: The Question of Contamination in Microanalysis |doi=10.1038/2071042a0 |journal=Nature |date=1965 |volume=207 |issue=5001 |page=1042|bibcode=1965Natur.207.1042O }}</ref> The 1969 fall of the Murchison meteorite provided over 100 kg of sample, the largest CM ever. Specimens were recovered quickly, from a dry area. Combined with progress in, e.g., biochemistry and petrochemistry techniques, the question could be addressed more definitively: sugars<ref>{{cite journal |last1=Nuevo |first1=M |last2=Cooper |first2=G |last3=Sandford |first3=S |title=Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites |doi=10.1038/s41467-018-07693-x |journal=Nature Communications |date=2018 |volume=9 |page=5276|bibcode=2018NatCo...9.5276N }}</ref> and amino acids<ref>{{cite journal |last1=Kvenvolden |first1=K |last2=Lawless |first2=J |last3=Pering |first3=K |last4=Peterson |first4=E |last5=Flores |first5=J |last6=Ponnamperuma |first6=C |title=Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite |doi=10.1038/228923a0 |pmid=5482102 |journal=Nature |date=Dec 1970 |volume=228 |issue=5275 |pages=923–6 |bibcode=1970Natur.228..923K }}</ref><ref>{{cite journal |last1=Oró |first1=J |last2=Gibert |first2=J |last3=Lichtenstein |first3=H |last4=Wikstrom |first4=S |last5=Flory |first5=D |title=Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite |doi=10.1038/230105a0 |pmid=4927006 |journal=Nature |date=Mar 1971 |volume=230 |issue=5289 |page=105|bibcode=1971Natur.230..105O }}</ref> existed in space, via meteorites. This includes non-terrestrial amino acids.<ref>{{cite journal |last1=Koga |first1=T |first2=Naraoka |last2=H |title=A new family of extraterrestrial amino acids in the Murchison meteorite |doi=10.1038/s41598-017-00693-9 |pmid=28377577 |pmc=5428853 |journal=Nature Scientific Reports |date=Apr 2017 |volume=7 |issue=1 |page=636|bibcode=2017NatSR...7..636K }}</ref> Multiple isotopes do not match Earth levels, strong evidence for non-contamination.<ref name=engel1997>{{cite journal |last1=Engel |first1=M |last2=Macko |first2=S |title=Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite |doi=10.1038/38460 |pmid=9305838 |journal=Nature |date=Sep 1997 |volume=389 |issue=6648 |page=265|bibcode=1997Natur.389..265E }}</ref><ref>{{cite journal |last1=Elsila |first1=J |last2=Charnley |first2=S |last3=Burton |first3=A |last4=Glavin |first4=D |last5=Dworkin |first5=J |title=Compound‐specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways |doi=10.1111/j.1945-5100.2012.01415.x |journal=M |date=Sep 2012 |volume=47 |issue=9 |page=1517|bibcode=2012M&PS...47.1517E |hdl=2060/20120014482 }}</ref>


======Chirality======
======Chirality======


The early analyses did not record optical rotation, and gave meteoritic organics as [[racemic]].<ref>{{cite journal |last1=Mueller |first1=G |title=The properties and theory of genesis of the carbonaceous complex within the cold bokevelt meteorite |doi=10.1016/0016-7037(53)90061-1 |journal=Geochimica et Cosmochimica Acta |date=Aug 1953 |volume=4 |page=1}}</ref><ref name="briggsmamikunian"/> As amino acids are diverse but low, the discovery of meteoritic [[Chirality (chemistry)|chirality]] had to await the separation of IOM.<ref>{{cite journal |last1=Engel |first1=M Nagy, B |title=Distribution and enantiomeric composition of amino acids in the Murchison meteorite |doi=10.1038/296837a0 |journal=Nature |date=Apr 1982 |volume=296 |page=837}}</ref> Handedness of some meteorite organics is now accepted (see below)<ref name=engel1997/>, including in the soluble organic fraction.<ref>{{cite journal |last1=Pizzarello |first1=S |last2=Yarnes |first2=C |title=Chiral molecules in space and their possible passage to planetary bodies recorded by meteorites |doi=10.1016/j.epsl.2018.05.026 |journal=Earth and Planetary Science Letters |date=Aug 2018 |volume=496 |page=198}}</ref><ref>{{cite journal |last1=Pizzarello |first1=S |last2=Yarnes |first2=C |title=The soluble organic compounds of the Mukundpura meteorite: A new CM chondrite fall |doi=10.1016/j.pss.2018.07.002 |journal=Planetary and Space Science |date=Dec 2018 |volume=164 |page=127}}</ref>
The early analyses did not record optical rotation, and gave meteoritic organics as [[racemic]].<ref>{{cite journal |last1=Mueller |first1=G |title=The properties and theory of genesis of the carbonaceous complex within the cold bokevelt meteorite |doi=10.1016/0016-7037(53)90061-1 |journal=Geochimica et Cosmochimica Acta |date=Aug 1953 |volume=4 |issue=1–2 |page=1|bibcode=1953GeCoA...4....1M }}</ref><ref name="briggsmamikunian"/> As amino acids are diverse but low, the discovery of meteoritic [[Chirality (chemistry)|chirality]] had to await the separation of IOM.<ref>{{cite journal |last1=Engel |first1=M Nagy, B |title=Distribution and enantiomeric composition of amino acids in the Murchison meteorite |doi=10.1038/296837a0 |journal=Nature |date=Apr 1982 |volume=296 |issue=5860 |page=837|bibcode=1982Natur.296..837E }}</ref> Handedness of some meteorite organics is now accepted (see below)<ref name=engel1997/>, including in the soluble organic fraction.<ref>{{cite journal |last1=Pizzarello |first1=S |last2=Yarnes |first2=C |title=Chiral molecules in space and their possible passage to planetary bodies recorded by meteorites |doi=10.1016/j.epsl.2018.05.026 |journal=Earth and Planetary Science Letters |date=Aug 2018 |volume=496 |page=198|bibcode=2018E&PSL.496..198P }}</ref><ref>{{cite journal |last1=Pizzarello |first1=S |last2=Yarnes |first2=C |title=The soluble organic compounds of the Mukundpura meteorite: A new CM chondrite fall |doi=10.1016/j.pss.2018.07.002 |journal=Planetary and Space Science |date=Dec 2018 |volume=164 |page=127|bibcode=2018P&SS..164..127P }}</ref>


====Isotopic analyses====
====Isotopic analyses====


Isotope studies have become vital in examining natural histories.<ref>{{cite journal |last1=Clayton |first1=R |last2=Onuma |first2=N |last3=Grossman |first3=L |last4=Mayeda |first4=T |title=Distribution of the pre-solar component in Allende and other carbonaceous chondrites |doi=10.1016/0012-821X(77)90005-X |journal=Earth and Planetary Science Letters |date=Mar 1977 |volume=32 |page=209}}</ref> Oxygen, in particular, forms quite stable oxides; it requires significant events, processes, or energies to segregate isotopes by their slight mass differences.
Isotope studies have become vital in examining natural histories.<ref>{{cite journal |last1=Clayton |first1=R |last2=Onuma |first2=N |last3=Grossman |first3=L |last4=Mayeda |first4=T |title=Distribution of the pre-solar component in Allende and other carbonaceous chondrites |doi=10.1016/0012-821X(77)90005-X |journal=Earth and Planetary Science Letters |date=Mar 1977 |volume=32 |issue=2 |page=209|bibcode=1977E&PSL..34..209C }}</ref> Oxygen, in particular, forms quite stable oxides; it requires significant events, processes, or energies to segregate isotopes by their slight mass differences.


CM and CI chondrites have a measurable difference in oxygen isotope levels. This suggests a different formation temperature, and hence a different zone of the young Solar System. However, CM and CO meteorites were found to have similar oxygen isotopes, indicating a relationship.<ref name="kallemeynwassoni"/><ref>{{cite journal |last1=Clayton |first1=R |last2=Mayeda |first2=T |title=Oxygen isotope studies of carbonaceous chondrites |doi=10.1016/S0016-7037(99)00090-3 |journal=Geochimica et Cosmochimica Acta |date=Jul 1999 |volume=63 |page=2089}}</ref><ref>{{cite conference |last1=Greenwood |first1=R |last2=Howard |first2=K |last3=Franchi |first3=I |last4=Zolensky |first4=M |last5=Buchanan |first5=P |last6=Gibson |first6=J |title=Oxygen Isotope Evidence For The Relationship Between CM And CO Chondrites: Could They Both Coexist On A Single Asteroid? |conference=45th LPSC |date=Mar 2014 |issue=2610}}</ref>
CM and CI chondrites have a measurable difference in oxygen isotope levels. This suggests a different formation temperature, and hence a different zone of the young Solar System. However, CM and CO meteorites were found to have similar oxygen isotopes, indicating a relationship.<ref name="kallemeynwassoni"/><ref>{{cite journal |last1=Clayton |first1=R |last2=Mayeda |first2=T |title=Oxygen isotope studies of carbonaceous chondrites |doi=10.1016/S0016-7037(99)00090-3 |journal=Geochimica et Cosmochimica Acta |date=Jul 1999 |volume=63 |issue=13–14 |page=2089|bibcode=1999GeCoA..63.2089C }}</ref><ref>{{cite conference |last1=Greenwood |first1=R |last2=Howard |first2=K |last3=Franchi |first3=I |last4=Zolensky |first4=M |last5=Buchanan |first5=P |last6=Gibson |first6=J |title=Oxygen Isotope Evidence For The Relationship Between CM And CO Chondrites: Could They Both Coexist On A Single Asteroid? |conference=45th LPSC |date=Mar 2014 |issue=2610}}</ref>


==Provenance==
==Provenance==


CMs, like other C-chondrites, are subjected to a serious [[selection effect|observation bias]]. C-chondrites are friable, due to both macro-scale porosity and micro-scale matrices of phyllosilicates, with many chondrules also having layers such as phyllosilicates.<ref>{{cite journal |last1=Hanna |first1=R |last2=Ketcham |first2=R |last3=Zolensky |first3=M |last4=Behr |first4=W | doi=10.1016/j.gca.2015.09.005 |title=Impact-induced brittle deformation, porosity loss, and aqueous alteration in the Murchison CM chondrite |journal=Geochimica et Cosmochimica Acta |date=Dec 2015 |volume=171 |page=256}}</ref> The meteorites have been described as "[[tuff]]" (compacted volcanic ash).<ref>{{cite journal |last1=Merrill |first1=G |doi=10.1130/GSAB-32-395 |journal=Bull. Geol. Soc. Amer. |date=1921 |volume=32 |page=395}}</ref><ref name="bunch78"/>
CMs, like other C-chondrites, are subjected to a serious [[selection effect|observation bias]]. C-chondrites are friable, due to both macro-scale porosity and micro-scale matrices of phyllosilicates, with many chondrules also having layers such as phyllosilicates.<ref>{{cite journal |last1=Hanna |first1=R |last2=Ketcham |first2=R |last3=Zolensky |first3=M |last4=Behr |first4=W | doi=10.1016/j.gca.2015.09.005 |title=Impact-induced brittle deformation, porosity loss, and aqueous alteration in the Murchison CM chondrite |journal=Geochimica et Cosmochimica Acta |date=Dec 2015 |volume=171 |page=256|bibcode=2015GeCoA.171..256H }}</ref> The meteorites have been described as "[[tuff]]" (compacted volcanic ash).<ref>{{cite journal |last1=Merrill |first1=G |title=On metamorphism in meteorites |doi=10.1130/GSAB-32-395 |journal=Bull. Geol. Soc. Amer. |date=1921 |volume=32 |issue=4 |page=395|bibcode=1921GSAB...32..395M }}</ref><ref name="bunch78"/>


As one example, the [[Tagish Lake meteorite]] provided ~10 kg of samples, from a meteor estimated to be 60-90 tons before [[Atmospheric entry|entry]].<ref>{{cite journal |last1=Hildebrand |first1=A |last2=McCausland |first2=P |last3=Brown |first3=P |last4=Longstaffe |first4=F |last5=Russell |first5=S |last6=Tagliaferri |first6=E |title=The fall and recovery of the Tagish Lake meteorite |bibcode=2006M&PS...41..407H |journal=Meteoritics & Planetary Science |date=2006 |volume=41 |page=407}}</ref>
As one example, the [[Tagish Lake meteorite]] provided ~10 kg of samples, from a meteor estimated to be 60-90 tons before [[Atmospheric entry|entry]].<ref>{{cite journal |last1=Hildebrand |first1=A |last2=McCausland |first2=P |last3=Brown |first3=P |last4=Longstaffe |first4=F |last5=Russell |first5=S |last6=Tagliaferri |first6=E |title=The fall and recovery of the Tagish Lake meteorite |bibcode=2006M&PS...41..407H |journal=Meteoritics & Planetary Science |date=2006 |volume=41 |issue=3 |page=407|doi=10.1111/j.1945-5100.2006.tb00471.x }}</ref>


By contrast, many ordinary chondrite meteorites are tougher<ref>{{cite journal |last1=Flynn |first1=G |last2=Consolmagno |first2=G |last3=Brown |first3=P |last4=Macke |first4=R |title=Physical properties of the stone meteorites: Implications for the properties of their parent bodies |doi=10.1016/j.chemer.2017.04.002 |journal=Geochemistry |date=Sep 2018 |volume=78 |page=269}}</ref> and overrepresented.<ref>{{cite journal |last1=Heck |first1=P |last2=Schmitz |first2=B |last3=Bottke |first3=W |last4=Rout |first4=S |last5=Kita |first5=N |title=Rare meteorites common in the Ordovician period |journal=Nature Astronomy |date=Jan 2017 |volume=1 |doi=10.1038/s41550-016-0035}}</ref> [[Iron meteorites]] are even moreso.<ref>{{cite book |last1=Grady |first1=M |last2=Hutchison |first2=R |title=Meteorites: Flux with Time and Impact Effects |publisher=Geological Society of London |date=1998 |isbn=9781862390171 |pages=67-70}} sec. The frequency of meteorite types </ref>
By contrast, many ordinary chondrite meteorites are tougher<ref>{{cite journal |last1=Flynn |first1=G |last2=Consolmagno |first2=G |last3=Brown |first3=P |last4=Macke |first4=R |title=Physical properties of the stone meteorites: Implications for the properties of their parent bodies |doi=10.1016/j.chemer.2017.04.002 |journal=Geochemistry |date=Sep 2018 |volume=78 |issue=3 |page=269|bibcode=2018ChEG...78..269F }}</ref> and overrepresented.<ref>{{cite journal |last1=Heck |first1=P |last2=Schmitz |first2=B |last3=Bottke |first3=W |last4=Rout |first4=S |last5=Kita |first5=N |title=Rare meteorites common in the Ordovician period |journal=Nature Astronomy |date=Jan 2017 |volume=1 |issue=2 |pages=0035 |doi=10.1038/s41550-016-0035|bibcode=2017NatAs...1E..35H }}</ref> [[Iron meteorites]] are even moreso.<ref>{{cite book |last1=Grady |first1=M |last2=Hutchison |first2=R |title=Meteorites: Flux with Time and Impact Effects |publisher=Geological Society of London |date=1998 |isbn=9781862390171 |pages=67–70}} sec. The frequency of meteorite types </ref>


CI and CM chondrites in particular are then subject to [[Meteorite_weathering|weathering]] on the ground. As large fractions of C-chondrite material are water soluble, ordinary chondrites and irons are more likely to be recognized and recovered. Greater coverage of hot deserts and [[Meteorite hunting#Meteorite hunting in Antarctica|Antarctica]] has resulted in many C-chondrite specimens.<ref>{{cite journal |last1=Cassidy |first1=W |last2=Rancitelli |first2=L |title=Antarctic Meteorites: The abundant material being discovered in Antarctica may shed light on the evolution of meteorite parent bodies and the history of the solar system |jstor=27851347 |journal=American Scientist |date=Mar 1982 |volume=70 |page=156}}</ref><ref>{{cite book |editor-last1=Lauretta |editor-first1=D |editor-last2=McSween |editor-first2=H |title=Meteorites and the Early Solar System II |date=2006 |publisher=University of Arizona Press |location=Tucson |isbn=9780816525621 |page=853}} Ch. Weathering of Chondritic Meteorites, Bland, P., Zolensky, M., Benedix, G., Sephton, M. </ref><ref>{{cite web |last1=Korotev |first1=Randy L. |title=Some Meteorite Statistics |url=http://meteorites.wustl.edu/meteorite_types.htm |website=Department of Earth and Planetary Sciences, Washington University in St. Louis |publisher=Washington University in St. Louis |accessdate=14 Sep 2019}}</ref>
CI and CM chondrites in particular are then subject to [[Meteorite_weathering|weathering]] on the ground. As large fractions of C-chondrite material are water soluble, ordinary chondrites and irons are more likely to be recognized and recovered. Greater coverage of hot deserts and [[Meteorite hunting#Meteorite hunting in Antarctica|Antarctica]] has resulted in many C-chondrite specimens.<ref>{{cite journal |last1=Cassidy |first1=W |last2=Rancitelli |first2=L |title=Antarctic Meteorites: The abundant material being discovered in Antarctica may shed light on the evolution of meteorite parent bodies and the history of the solar system |jstor=27851347 |journal=American Scientist |date=Mar 1982 |volume=70 |issue=2 |pages=156–164 }}</ref><ref>{{cite book |editor-last1=Lauretta |editor-first1=D |editor-last2=McSween |editor-first2=H |title=Meteorites and the Early Solar System II |date=2006 |publisher=University of Arizona Press |location=Tucson |isbn=9780816525621 |page=853}} Ch. Weathering of Chondritic Meteorites, Bland, P., Zolensky, M., Benedix, G., Sephton, M. </ref><ref>{{cite web |last1=Korotev |first1=Randy L. |title=Some Meteorite Statistics |url=http://meteorites.wustl.edu/meteorite_types.htm |website=Department of Earth and Planetary Sciences, Washington University in St. Louis |publisher=Washington University in St. Louis |accessdate=14 Sep 2019}}</ref>


====Parent body(s)====
====Parent body(s)====
Line 132: Line 132:
{{Main|Parent body}}
{{Main|Parent body}}


As carbonaceous specimens, CM and other groups are widely assumed to be from carbonaceous asteroids. This includes the explicit [[C-type asteroids]], and to various degrees the related [[G-type asteroid|G-]], [[B-type asteroid|B-]] (including the deprecated [[F-type asteroid|F-]]), [[D-type asteroid|D-]], and [[F-type asteroid|P-types]].<ref>{{cite book |title=Encyclopedia of Planetary Science. Encyclopedia of Earth Science Series |date=1997 |publisher=Springer |location=Dordrecht |isbn=978-0-412-06951-2 |page=486}} Chapter: Meteorite parent bodies, Britt, D., Lebofsky, L. </ref><ref>{{cite journal |last1=Cloutis |first1=E |last2=Binzel |first2=R |last3=Gaffey |first3=M |title=Establishing Asteroid–Meteorite Links |doi=10.2113/gselements.10.1.25 |journal=Elements |date=Feb 2014 |volume=10 |page=25}}</ref><ref>{{cite journal |last1=Lee |first1=M Cohen B King A Greenwood R |title=The diversity of CM carbonaceous chondrite parent bodies explored using Lewis Cliff 85311 |doi=10.1016/j.gca.2019.07.027 |journal=Geochimica et Cosmochimica Acta |date=Jul 2019 |volume=257}}</ref>
As carbonaceous specimens, CM and other groups are widely assumed to be from carbonaceous asteroids. This includes the explicit [[C-type asteroids]], and to various degrees the related [[G-type asteroid|G-]], [[B-type asteroid|B-]] (including the deprecated [[F-type asteroid|F-]]), [[D-type asteroid|D-]], and [[F-type asteroid|P-types]].<ref>{{cite book |title=Encyclopedia of Planetary Science. Encyclopedia of Earth Science Series |date=1997 |publisher=Springer |location=Dordrecht |isbn=978-0-412-06951-2 |page=486}} Chapter: Meteorite parent bodies, Britt, D., Lebofsky, L. </ref><ref>{{cite journal |last1=Cloutis |first1=E |last2=Binzel |first2=R |last3=Gaffey |first3=M |title=Establishing Asteroid–Meteorite Links |doi=10.2113/gselements.10.1.25 |journal=Elements |date=Feb 2014 |volume=10 |page=25}}</ref><ref>{{cite journal |last1=Lee |first1=M Cohen B King A Greenwood R |title=The diversity of CM carbonaceous chondrite parent bodies explored using Lewis Cliff 85311 |doi=10.1016/j.gca.2019.07.027 |journal=Geochimica et Cosmochimica Acta |date=Jul 2019 |volume=257|pages=224–244 |bibcode=2019GeCoA.264..224L }}</ref>


Aside from the diversity of CMs, and the diversity of C-asteroid [[Asteroid spectral types|types and subtypes]] (besides the [[List_of_minor_planets|asteroids themselves]]), the question of parentage is very open as of this writing. The [[2008_TC3|Almahata Sitta meteorite]] was catalogued as a ureilite, an entirely different meteorite class. However, it entered as asteroid 2008 TC<sub>3</sub>. A crude spectrum was taken before entry, which would have placed 2008 TC<sub>3</sub> as a F- or B-type.<ref>{{cite journal |last1=Burbine |first1=T |title=Advances in determining asteroid chemistries and mineralogies |doi=10.1016/j.chemer.2015.09.003 |journal=Chemie de Erde |date=2016 |volume=76 |page=181}}</ref>
Aside from the diversity of CMs, and the diversity of C-asteroid [[Asteroid spectral types|types and subtypes]] (besides the [[List_of_minor_planets|asteroids themselves]]), the question of parentage is very open as of this writing. The [[2008_TC3|Almahata Sitta meteorite]] was catalogued as a ureilite, an entirely different meteorite class. However, it entered as asteroid 2008 TC<sub>3</sub>. A crude spectrum was taken before entry, which would have placed 2008 TC<sub>3</sub> as a F- or B-type.<ref>{{cite journal |last1=Burbine |first1=T |title=Advances in determining asteroid chemistries and mineralogies |doi=10.1016/j.chemer.2015.09.003 |journal=Chemie de Erde |date=2016 |volume=76 |issue=2 |page=181|bibcode=2016ChEG...76..181B }}</ref>


Some amount of [[space weathering]] is seen to occur on carbonaceous asteroids; this complicates attempts to link parents via spectroscopy.<ref>{{cite journal |last1=Lantz |first1=C |last2=Clark |first2=B |last3=Barucci |first3=M |last4=Lauretta |first4=D |title=Evidence for the effects of space weathering spectral signatures on low albedo asteroids |doi=10.1051/0004-6361/201321593 |journal=Astronomy and Astrophysics |date=May 2013 |volume=554 |page=A138}}</ref><ref>{{cite journal |last1=Matsuoka |first1=M |last2=Nakamura |first2=T |last3=Kimura |first3=Y |last4=Hiroi |first4=T |last5=Nakamura |first5=R |last6=Okumura |first6=S |last7=Sasaki |first7=S |title=Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids |doi=10.1016/j.icarus.2015.02.029 |journal=Icarus |date=Mar 2015 |volume=254 |page=135}}</ref><ref>{{cite journal |last1=Thompson |first1=M |last2=Loeffler |first2=M |last3=Morris |first3=R |last4=Keller |first4=L |last5=Christoffersen |first5=R |doi=10.1016/j.icarus.2018.09.022 |title=Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite |journal=Icarus |date=Feb 2019 |volume=319 |page=499}}</ref>
Some amount of [[space weathering]] is seen to occur on carbonaceous asteroids; this complicates attempts to link parents via spectroscopy.<ref>{{cite journal |last1=Lantz |first1=C |last2=Clark |first2=B |last3=Barucci |first3=M |last4=Lauretta |first4=D |title=Evidence for the effects of space weathering spectral signatures on low albedo asteroids |doi=10.1051/0004-6361/201321593 |journal=Astronomy and Astrophysics |date=May 2013 |volume=554 |page=A138|bibcode=2013A&A...554A.138L }}</ref><ref>{{cite journal |last1=Matsuoka |first1=M |last2=Nakamura |first2=T |last3=Kimura |first3=Y |last4=Hiroi |first4=T |last5=Nakamura |first5=R |last6=Okumura |first6=S |last7=Sasaki |first7=S |title=Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids |doi=10.1016/j.icarus.2015.02.029 |journal=Icarus |date=Mar 2015 |volume=254 |page=135|bibcode=2015Icar..254..135M }}</ref><ref>{{cite journal |last1=Thompson |first1=M |last2=Loeffler |first2=M |last3=Morris |first3=R |last4=Keller |first4=L |last5=Christoffersen |first5=R |doi=10.1016/j.icarus.2018.09.022 |title=Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite |journal=Icarus |date=Feb 2019 |volume=319 |page=499|bibcode=2019Icar..319..499T }}</ref>


A hypothesis persists that all CMs stem from a single parent.<ref name="kallemeynwassoni"/><ref>{{cite journal |last1=Bland |first1=P |last2=Alard |first2=O |last3=Benedix |first3=G |last4=Kearsley |first4=A |title=Volatile fractionation in the early solar system and chondrule/matrix complementarity |doi=10.1073/pnas.0501885102 |journal=PNAS |date=Sep 2005 |volume=102 |page=13755}}</ref><ref>{{cite conference|last1=Franchi |first1=I |last2=Greenwood |first2=R |last3=Howard |first3=K |last4=King |first4=A |last5=Lee |first5=M |last6=Anand |first6=M |last7=Findlay |first7=R |title=Oxygen Isotope Variation Of CM And Related Chondrites: Multiple Parent Bodies Or A Single Heterogeneous Source? |conference=Meteoritical Society Meeting, 2019 |date=2019 |page=6482}}</ref>
A hypothesis persists that all CMs stem from a single parent.<ref name="kallemeynwassoni"/><ref>{{cite journal |last1=Bland |first1=P |last2=Alard |first2=O |last3=Benedix |first3=G |last4=Kearsley |first4=A |title=Volatile fractionation in the early solar system and chondrule/matrix complementarity |doi=10.1073/pnas.0501885102 |pmid=16174733 |pmc=1224360 |journal=PNAS |date=Sep 2005 |volume=102 |issue=39 |pages=13755–60 |bibcode=2005PNAS..10213755B }}</ref><ref>{{cite conference|last1=Franchi |first1=I |last2=Greenwood |first2=R |last3=Howard |first3=K |last4=King |first4=A |last5=Lee |first5=M |last6=Anand |first6=M |last7=Findlay |first7=R |title=Oxygen Isotope Variation Of CM And Related Chondrites: Multiple Parent Bodies Or A Single Heterogeneous Source? |conference=Meteoritical Society Meeting, 2019 |date=2019 |page=6482}}</ref>


[[]]
[[]]
Line 144: Line 144:
====Polymict meteorites====
====Polymict meteorites====


* PRA 04401- nominally a [[HED meteorite|HED]], contains as much CM or CM-like material in [[Clastic rock#Impact breccias|clasts]] as HED material<ref>{{cite journal |last1=Herrin |first1=J |last2=Zolensky |first2=M |last3=Cartwright |first3=J |last4=Mittlefehldt |first4=D |last5=Ross |first5=D |title=Carbonaceous Chondrite-Rich Howardites; The Potential For Hydrous Lithologies On The HED Parent |bibcode=2011LPI....42.2806H |conference=42nd LPSC |date=Mar 2011 |issue=1608}}</ref>
* PRA 04401- nominally a [[HED meteorite|HED]], contains as much CM or CM-like material in [[Clastic rock#Impact breccias|clasts]] as HED material<ref>{{cite journal |last1=Herrin |first1=J |last2=Zolensky |first2=M |last3=Cartwright |first3=J |last4=Mittlefehldt |first4=D |last5=Ross |first5=D |title=Carbonaceous Chondrite-Rich Howardites; The Potential For Hydrous Lithologies On The HED Parent |journal=Lunar and Planetary Science Conference |bibcode=2011LPI....42.2806H |conference=42nd LPSC |date=Mar 2011 |issue=1608|pages=2806 }}</ref>
*[[Kaidun]]
*[[Kaidun]]



Revision as of 21:08, 30 September 2019

CM chondrites are a group of chondritic meteorites which resemble their type specimen, the Mighei meteorite. The CM is the most commonly recovered group of the 'carbonaceous chondrite' class of meteorites, though all are rarer in collections than ordinary chondrites.

Overview and Taxonomy

Meteorites mostly divide into Ordinary and 'Carbonaceous' chondrite classes; far fewer belong to lesser classes like Enstatites and Ureilites. The term 'chondrite' indicates that these contain (or may have contained) chondrules in a matrix. Chondrules are cooled droplets of minerals, predating the meteorites themselves. The term 'carbonaceous' was assigned relative to the ordinary chondrites; some Enstatite and Ureilite meteorites may have more carbon than C-chondrites.[1] Still, all C-chondrites are distinguished from ordinary chondrites by a non-trace carbon content (resulting in a dark color), plus other volatiles, giving a lower density.[2][3] After the classes were devised, a more rigorous definition was found: C-chondrites contain proportionally higher magnesium than ordinary chondrites.[4][5][6]

The C-chondrites subdivide into CI, CM, CO, CV, CK, CR, and lesser groups (CH, CB, and ungrouped C-meteorites). Specimens are formed into groups by their petrological and chemical qualities, and the group named for a salient example. These include the CI (Ivuna-like), CM (Mighei-like), CO (Ornans-like), etc. The CM group most resembles the CI and CO chondrites; a CM-CO is sometimes described.[7][8][9] All three groups contain clearly anomalous 50Ti and 54Cr isotopes.[10][11]

Though the C-chondrites are far rarer than ordinary chondrites, the CM group is "the most abundant type of" them.[12][13] The latest Catalogue of Meteorites (5th edition, 2000) gives 15 CM falls (observed entries, then recoveries), and 146 finds (meteorites with entries unobserved, possibly ancient). By contrast, the next highest are the COs- 5 falls, 80 finds listed. These are in a class of 36 C-chondrite falls, 435 finds. If the CMs and COs are taken to be a clan, its dominance is even higher.[14]

Petrology

C-chondrites in general, and CM chondrites among them, have low densities for meteorites. CMs are slightly more dense (~2.1 gram/cc) than the CIs, but less dense than CO and other C-chondrites.[15][16] This is due to a combination of brecciation (rock lithified from fragments of prior rocks)[17] including porosities[2] and inherently light constituent materials (see chemistry, below). (Rare unbrecciated CMs include Y-791198 and ALH81002.[18])

Based primarily on petrology, early scientists attempted to quantify different meteorites. Rose ("kohlige meteorite"),[19] then Tschermak devised early taxonomies.[20] In the 1904 scheme of Brezina, today's CM chondrites would be "K" ("coaly chondrites").[21] Wiik published the first recognizably modern system in 1956, dividing meteorites into Type I, II, and III. CMs fell within Wiik's Type II.[22]

The CM chondrites are essentially all Type 2 in the petrographic scale of Van Schmus and Wood 1967; by that time, CI and CM recoveries were enough to define the 'left' (aqueous alteration) end of the scale. (CI chondrites, the Van Schmus Wood Type 1, is equivalent to Wiik's Type I, etc.) The types 4 through 6 indicate increasing thermal alteration; Type 3 is assumed to be unaltered.[23]

The modern groups 'V' and 'O' were named by Van Schmus in 1969 as divisions of Type 3, as 'subclass C3V' and 'C3O'.[24] Wasson then added C2M in 1974; since then, C2Ms have generally been shortened to simply 'CM', as have the other groups.[25]

Petrologic Types, By Group
Group 1 2 3 4 5 6 7
CI
CM
CR
CH
CB
CV
CO
CK

After Weisberg et al. 2006,[8] Giese et al. 2019[26] Note: lone CV2 specimen, Mundrabilla 012[27][28]

Chondrules and similar

As Type 2 meteorites, CM chondrites have some remaining chondrules; others have been modified or dissolved by water. COs have more chondrules; CIs have either trace outlines of former chondrules ("pseudomorphs") or, some have argued, never contained any chondrules at all. Many CM chondrules are surrounded by either rims of accessory minerals, or haloes of water-altered chondrule material.[29][30]

The chondrules of CM chondrites, though fewer, are larger than in COs. While CM chondrules are smaller than average in diameter (~300 micrometer), CO chondrules are exceptionally small (~170 um).[31][32] This may be a survivor bias: consider that the water which dissolves CM chondrules successfully eliminates those which are already small, while those which were large may remain to be observed, though with less of the original material.[33] Similarly, CMs contain minor CAIs (calcium-aluminium rich inclusions).[34][35]

Matrix

CM meteorites also contain fewer grains of olivine and pyroxene silicates than COs, but more than CIs. As with chondrules, these are water-susceptible, and follow the water progression of the petrographic scale. So, too, do grains of free metal. CO meteorites contain higher levels of free metal domains, where CIs have mostly oxidized theirs; CMs are in between.[36][37]

Both free metal, and grains of olivine/pyroxene, have been largely or predominantly altered to matrix materials. A CM meteorite will consist of more matrix than a CO, but less than a CI (which are essentially all matrix, per Van Schmus & Wood 1967).[38]

Sub-Classification

The CM group is both numerous and diverse. Multiple attempts have been made to subdivide the group beyond the Van Schmus-Wood typing. McSween 1979 was an early proposal.[39] After him, these add a suffix after the petrologic type, with 'CM2.9' referring to less-altered, CO-like specimens, and 'CM2.0' being more-altered, CI-like meteorites. (As of recently, no true 2.9 specimens have been catalogued.)

McSween 1979 graded the amount of matrix versus total amount, and the depletion of iron in the matrix, to quantify higher degrees of alteration.[39]

Browning et al. 1996 devised a formula ("MAI," Mineralogical Alteration Index), quantified the amount of unaltered silicate grains, and graded the alteration level of chondrules to quantify alteration.[40]

Rubin et al. 2007 added measurement of carbonates, with more dolomite and less calcite indicating higher alteration.[41]

Howard et al. 2009, 2011 measured total abundance of phyllosilicates to quantify alteration.[42][13]

Alexander et al. 2012, 2013 measured deuterium level, C/H, and nitrogen isotopes to quantify alteration.[43][44]

Transitional examples

CM-CO

  • Paris- described as "the least altered CM chondrite so far"[45] "that bridges the gap between CMs and COs"[46]
  • ALHA77307
  • Adelaide
  • Acfer 094
  • MAC87300, MAC88107

CM-CI

Chemistry

Carbonaceous chondrites, as the name suggests, contain appreciable carbon compounds.[47] These include native carbon, simple compounds like metal carbides and carbonates, organic chains, and polycyclic aromatic hydrocarbons (PAHs).

The elemental abundances of some C-chondrite groups (with the obvious exception of hydrogen, helium, and some other elements, see below)[48][49] have long been known to resemble solar abundance values.[50][51][52] The CI chondrites, in particular, correspond "quite closely, more so than does any other type of meteoric or terrestrial matter";[53] called "somewhat miraculous".[8] Of course, only gas giant planets have the mass to retain, explicitly, hydrogen and helium. This extends to most noble gases, and to lesser amounts the elements N, O and C, the atmophiles. Other elements- volatiles and refractories- have correspondences between CI chondrites and the solar photosphere and solar wind such that the CI group is used as a cosmochemical standard.[54][55] As the Sun is 99% of the mass of the Solar System, knowing the solar abundance is the starting point for any other part or process of this System.

The solar correspondence is similar but weaker in CM chondrites. More-volatile elements have been somewhat depleted relative to the CIs, and more-refractory elements somewhat enriched.[7][54][55]

A small amount[56] of meteorite materials are small presolar grains (PSGs).[57][58] These are crystals of material which survives from interstellar space, since before the formation of the Solar System. PSGs include silicon carbide ("Moissanite")[59] and micro-diamonds,[60] as well as other refractory minerals such as corundum and zircon.[61] The isotope levels of their elements do not match solar system levels, instead being closer to e. g., the interstellar medium.

As with other meteorite classes, some carbon content is as carbides (often Cohenite, Fe3C with e.g., nickel substitutions)[62] and carbonates such as calcite and dolomite.[63][64][65] Aragonite appears, where CIs contain little or none.[66]

Total carbon compounds in CM chondrites are lower than in CI chondrites; however, more are aromatics.[67] Isotope profiling indicates these are meteoritic, not terrestrial.[68]

The organics of C-chondrites divide into soluble, and IOM (Insoluble Organic Matter). The soluble fraction would yield to the chemistry techniques of the mid-20th century,[69][70] giving paraffin, naphthene and aromatics, with other contributions.[71]

The IOM is, however, the clear majority of the organic component; in 1963, Briggs and Mamikunian could only give it as "very high molecular weight". IOM itself divides into two components: thermally labile, and refractory.[72]

Amino acids

Amino acids and other organics were first reported by multiple groups;[73][74] however, concentrations were low to undetectable,[75][76] and claimed to be terrestrial contamination.[77][78] The 1969 fall of the Murchison meteorite provided over 100 kg of sample, the largest CM ever. Specimens were recovered quickly, from a dry area. Combined with progress in, e.g., biochemistry and petrochemistry techniques, the question could be addressed more definitively: sugars[79] and amino acids[80][81] existed in space, via meteorites. This includes non-terrestrial amino acids.[82] Multiple isotopes do not match Earth levels, strong evidence for non-contamination.[83][84]

Chirality

The early analyses did not record optical rotation, and gave meteoritic organics as racemic.[85][71] As amino acids are diverse but low, the discovery of meteoritic chirality had to await the separation of IOM.[86] Handedness of some meteorite organics is now accepted (see below)[83], including in the soluble organic fraction.[87][88]

Isotopic analyses

Isotope studies have become vital in examining natural histories.[89] Oxygen, in particular, forms quite stable oxides; it requires significant events, processes, or energies to segregate isotopes by their slight mass differences.

CM and CI chondrites have a measurable difference in oxygen isotope levels. This suggests a different formation temperature, and hence a different zone of the young Solar System. However, CM and CO meteorites were found to have similar oxygen isotopes, indicating a relationship.[7][90][91]

Provenance

CMs, like other C-chondrites, are subjected to a serious observation bias. C-chondrites are friable, due to both macro-scale porosity and micro-scale matrices of phyllosilicates, with many chondrules also having layers such as phyllosilicates.[92] The meteorites have been described as "tuff" (compacted volcanic ash).[93][29]

As one example, the Tagish Lake meteorite provided ~10 kg of samples, from a meteor estimated to be 60-90 tons before entry.[94]

By contrast, many ordinary chondrite meteorites are tougher[95] and overrepresented.[96] Iron meteorites are even moreso.[97]

CI and CM chondrites in particular are then subject to weathering on the ground. As large fractions of C-chondrite material are water soluble, ordinary chondrites and irons are more likely to be recognized and recovered. Greater coverage of hot deserts and Antarctica has resulted in many C-chondrite specimens.[98][99][100]

Parent body(s)

As carbonaceous specimens, CM and other groups are widely assumed to be from carbonaceous asteroids. This includes the explicit C-type asteroids, and to various degrees the related G-, B- (including the deprecated F-), D-, and P-types.[101][102][103]

Aside from the diversity of CMs, and the diversity of C-asteroid types and subtypes (besides the asteroids themselves), the question of parentage is very open as of this writing. The Almahata Sitta meteorite was catalogued as a ureilite, an entirely different meteorite class. However, it entered as asteroid 2008 TC3. A crude spectrum was taken before entry, which would have placed 2008 TC3 as a F- or B-type.[104]

Some amount of space weathering is seen to occur on carbonaceous asteroids; this complicates attempts to link parents via spectroscopy.[105][106][107]

A hypothesis persists that all CMs stem from a single parent.[7][108][109]

[[]]

Polymict meteorites

  • PRA 04401- nominally a HED, contains as much CM or CM-like material in clasts as HED material[110]
  • Kaidun

List of CM chondrites

Notable specimens

Recently recovered CM chondrites

  • Aguas Zarcas- Apr 2019 fall, specimens recovered quickly; >20 kg

See also

General References

  • Mason, B. The Carbonaceous Chondrites. 1962 Space Sciences Reviews vol. 1, p. 621
  • Meteorites and the Early Solar System, Kerridge, J. Matthews, M. eds. 1988 University of Arizona Press, Tucson ISBN 9780816510634
  • The Catalogue of Meteorites, Grady, M. ed. 2000 Cambridge University Press, Cambridge ISBN 0 521 66303 2
  • Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds. 2006 University of Arizona Press, Tucson ISBN 9780816525621

References

  1. ^ Scott, E; Krot, A (2003). Treatise on Geochemistry. Vol. 1. Elsevier. p. 143. ISBN 0-08-043751-6. Ch. Chondrites and their Components
  2. ^ a b Britt, D (Jul 2000). "The porosity of dark meteorites and the structure of low-albedo asteroids". Icarus. 143 (1): 213. Bibcode:2000Icar..146..213B.
  3. ^ Macke, R; Consolmagno, G; Britt, D (Nov 2011). "Density, porosity, and magnetic susceptibility of carbonaceous chondrites". Meteoritics & Planetary Science. 46 (12): 1842. Bibcode:2011M&PS...46.1842M. doi:10.1111/j.1945-5100.2011.01298.x.
  4. ^ Urey, H (Jun 1961). "Criticism of Dr. B. Mason's paper on "The origin of meteorites"". Journ. Geophys. Res. 66 (6): 1988. Bibcode:1961JGR....66.1988U. doi:10.1029/JZ066i006p01988.
  5. ^ Ahrens, L (1964). "Si-Mg fractionation in chondrites". Geochimica et Cosmochimica Acta. 28 (4): 411. Bibcode:1964GeCoA..28..411A. doi:10.1016/0016-7037(64)90115-2.
  6. ^ Ahrens, L (1965). "Observations on the Fe-Si-Mg relationship in chondrites". Geochimica et Cosmochimica Acta. 29 (7): 801. Bibcode:1965GeCoA..29..801A. doi:10.1016/0016-7037(65)90032-3.
  7. ^ a b c d Kallemeyn, G; Wasson, J (1981). "The compositional classification of chondrites-I. The carbonaceous chondrite groups". Geochimica et Cosmochimica Acta. 45: 1217. doi:10.1016/0016-7037(81)90145-9.
  8. ^ a b c Weisberg, M; McCoy, T; Krot, A (2006). "Systematics and Evaluation of Meteorite Classification". Meteorites and the Early Solar System II. Vol. 45. Tucson: University of Arizona Press. p. 19. Bibcode:1981GeCoA..45.1217K. {{cite book}}: |journal= ignored (help)
  9. ^ "CM-CO clan chondrites". Meteoritical Bulletin: Search the Database. The Meteoritical Society. Retrieved 10 Sep 2019.
  10. ^ Trinquier, A; Elliott, T; Ulfbeck, D; Coath, C; Krot, A; Bizzarro, M (17 Apr 2009). "Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk". Science. 324 (5925): 374–6. Bibcode:2009Sci...324..374T. doi:10.1126/science.1168221. PMID 19372428.
  11. ^ Qin, L; Rumble, D; Alexander, C; Carlson, R; Jenniskens, P; Shaddad, M (2010). "The chromium isotopic composition of Almahata Sitta". Meteoritics & Planetary Science. 45 (1533): 1771. Bibcode:2010LPI....41.1910Q. doi:10.1111/j.1945-5100.2010.01109.x.
  12. ^ McSween, H (1979). "Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix". Geochimica et Cosmochimica Acta. 43 (11): 1761. Bibcode:1979GeCoA..43.1761M. doi:10.1016/0016-7037(79)90024-3.
  13. ^ a b Howard, K; Benedix, G; Bland, P; Cressey, G (2011). "Modal mineralogy of CM chondrites by X-ray Diffraction (PSR-XRD)". Geochimica et Cosmochimica Acta. 75: 2735. doi:10.1111/j.1945-5100.2004.tb00046.x.
  14. ^ Grady, M (2000). The Catalogue of Meteorites. Cambridge: Cambridge University Press. ISBN 0-521-66303-2.
  15. ^ Britt, D; Consolmagno, G (August 2003). "Stony meteorite porosities and densities: A review of the data through 2001". Meteoritics & Planetary Science. 38 (8): 1161. Bibcode:2003M&PS...38.1161B. doi:10.1111/j.1945-5100.2003.tb00305.x.
  16. ^ Carry, B (2012). "Density of asteroids". Planetary & Space Science. 73 (1): 98. arXiv:1203.4336. Bibcode:2012P&SS...73...98C. doi:10.1016/j.pss.2012.03.009.
  17. ^ Bischoff, A; Ebert, S; Metzler, K; Lentfort, S (2017). Breccia Classification of CM Chondrites. 80th Meteoritical Society. Bibcode:2017LPICo1987.6089B.
  18. ^ Chizmadia, L; Brearley, A (2004). Aqueous Alteration Of Carbonaceous Chondrites: New Insights From Comparative Studies Of Two Unbrecciated CM2 Chondrite, Y-791198 And ALH81002. LPS XXXV. Bibcode:2004LPI....35.1753C.
  19. ^ Rose, G (1863). Physik. Abhandl. Akad. Wiss. Berlin. p. 23.{{cite book}}: CS1 maint: location missing publisher (link)
  20. ^ Tschermak, G (1883). "Beitrag zur Classification der Meteoriten". Math. -Naturw. Cl. 85 (1). Sitzber. Akad. Wiss.: 347–71.
  21. ^ Brezina, A (1904). "The Arrangement of Collections of Meteorites". Proc. Amer. Phil. Soc. 43 (176): 211–247. JSTOR 983506.
  22. ^ Wiik, H (1956). "The chemical composition of some stony meteorites". Geochimica et Cosmochimica Acta. 9 (5): 279. Bibcode:1956GeCoA...9..279W. doi:10.1016/0016-7037(56)90028-X.
  23. ^ Van Schmus, W; Wood, J (1967). "A chemical-petrologic classification for the chondritic meteorites". Geochimica et Cosmochimica Acta. 31 (5): 747. Bibcode:1967GeCoA..31..747V. doi:10.1016/S0016-7037(67)80030-9.
  24. ^ Millman, P., ed. (1969). "Mineralogical, Petrology, and Classification of Types 3 and 4 Carbonaceous Chondrites". Meteorite Research. Dordrecht: D. Reidel Publishing Company. p. 480. ISBN 978-94-010-3413-5.
  25. ^ Wasson, J (1974). Meteorites: Classification and Properties. New York: Springer-Verlag. ISBN 978-3-642-65865-5.
  26. ^ Giese, C Ten Kate I Plumper O King H Lenting C Liu Y Tielens A (Jul 2019). "The evolution of polycyclic aromatic hydrocarbons under simulated inner asteroid conditions". Meteoritics & Planetary Science. 54 (9): 1930. Bibcode:2019M&PS...54.1930G. doi:10.1111/maps.13359.
  27. ^ "Meteoritical Bulletin: Entry for Mundrabilla 012". Meteoritical Bulletin. The Meteoritical Society. Retrieved 14 Sep 2019.
  28. ^ "Mundrabilla 012 meteorite, Mundrabilla Roadhouse, Dundas Shire, Western Australia, Australia". Mindat.org. Retrieved 14 Sep 2019.
  29. ^ a b Bunch, T; Chang, S (1978). Carbonaceous chondrite (CM) phyllosilicates: condensation or alteration origin?. Lunar and Planetary Science IX. p. 134. Bibcode:1978LPI.....9..134B.
  30. ^ Metzler, K; Bischoff, A (Jan 1994). "Constraints on chondrule agglomeration from fine-grained chondrule rims". Chondrules and the Protoplanetary Disk, NASA-CR-197121. p. 23.
  31. ^ Rubin, A (Sep 1989). "Size‐frequency distributions of chondrules in CO3 chondrites". Meteoritics. 24 (3): 179. Bibcode:1989Metic..24..179R. doi:10.1111/j.1945-5100.1989.tb00960.x.
  32. ^ Choe, W; Huber, H; Rubin, A; Kallemeyn, G; Wasson, J (Apr 2010). "Compositions and taxonomy of 15 unusual carbonaceous chondrites". Meteoritics & Planetary Science. 45 (4): 531. Bibcode:2010M&PS...45..531C. doi:10.1111/j.1945-5100.2010.01039.x.
  33. ^ Rubin, A (May 1998). "Correlated petrologic and geochemical characteristics of CO3 chondrites". Meteoritics & Planetary Science. 33 (2): 385. Bibcode:1998M&PS...33..385R. doi:10.1111/j.1945-5100.1998.tb01644.x.
  34. ^ Rubin, A (Oct 2007). "Petrography of refractory inclusions in CM2.6 QUE 97990 and the origin of melilite‐free spinel inclusions in CM chondrites". Meteoritics & Planetary Science. 42 (10): 1711. Bibcode:2007M&PS...42.1711R. doi:10.1111/j.1945-5100.2007.tb00532.x.
  35. ^ Hezel, D; Russell, S; Ross, A; Kearsley, A (2008). "Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations". Meteoritics & Planetary Science. 43 (11): 1879. arXiv:0810.2174. Bibcode:2008M&PS...43.1879H. doi:10.1111/j.1945-5100.2008.tb00649.x.
  36. ^ Barber, D (1977). "The Matrix of C2 and C3 Carbonaceous Chondrites". Meteoritics. 12: 172. Bibcode:1977Metic..12..172B.
  37. ^ Barber, D (1981). "Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites". Geochimica et Cosmochimica Acta. 45 (6): 945. Bibcode:1981GeCoA..45..945B. doi:10.1016/0016-7037(81)90120-4.
  38. ^ Wood, J (Oct 1967). "Olivine and pyroxene compositions in type II carbonaceous chondrites". Geochimica et Cosmochimica Acta. 31 (10): 2095. Bibcode:1967GeCoA..31.2095W. doi:10.1016/0016-7037(67)90144-5.
  39. ^ a b McSween, H (1979). "Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix". Geochimica et Cosmochimica Acta. 43 (11): 1761. Bibcode:1979GeCoA..43.1761M. doi:10.1016/0016-7037(79)90024-3.
  40. ^ Browning, L; McSween, H; Zolensky, M (1996). "Correlated alteration effects in CM carbonaceous chondrites". Geochimica et Cosmochimica Acta. 60 (14): 2621. Bibcode:1996GeCoA..60.2621B. doi:10.1016/0016-7037(96)00121-4.
  41. ^ Rubin, A; Trigo-Rodriguez, J; Huber, H; Wasson, J (2007). "Progressive aqueous alterations of CM carbonaceous chondrites". Geochimica et Cosmochimica Acta. 71 (9): 2361. Bibcode:2007GeCoA..71.2361R. doi:10.1016/j.gca.2007.02.008.
  42. ^ Howard, K; Benedix, G; Bland, P; Cressey, G (Aug 2009). "Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration". Geochimica et Cosmochimica Acta. 73 (15): 4576. Bibcode:2009GeCoA..73.4576H. doi:10.1016/j.gca.2009.04.038.
  43. ^ Alexander, C; Bowden, R; Fogel, M; Howard, K; Greenwood, R (Mar 2012). The Classification of CM and CR Chondrites Using Bulk H Abundances and Isotopes. 43rd LPSC.
  44. ^ Alexander, C; Howard, K; Bowden, R; Fogel, M (2013). "The classification of CM and CR chondrites using bulk H, C N abundances and isotopic compositions". Geochimica et Cosmochimica Acta. 123: 244. Bibcode:2013GeCoA.123..244A. doi:10.1016/j.gca.2013.05.019.
  45. ^ Hewins, R; Bourot-Denise, M; et al. (Jan 2014). "The Paris meteorite, the least altered CM chondrite so far". Geochimica et Cosmochimica Acta. 124: 190. Bibcode:2014GeCoA.124..190H. doi:10.1016/j.gca.2013.09.014.
  46. ^ Bourot-Denism, M; Zanda, B; Marrocchi, Y; Greenwood, R; Pont, S (Mar 2010). "Paris: The slightly altered, slightly metamorphosed CM that bridges the gap between CMs and COs". 41st LPSC (1683): 1683. Bibcode:2010LPI....41.1683B.
  47. ^ Pearson, V; Sephton, M; Franchi, I; Gibson, J; Gilmour, I (Jan 2010). "Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions". Meteoritics & Planetary Science. 41 (12): 1899. Bibcode:2006M&PS...41.1899P. doi:10.1111/j.1945-5100.2006.tb00459.x.
  48. ^ Holweger, H (Feb 1977). "The solar Na/Ca and S/Ca ratios: A close comparison with carbonaceous chondrites". Earth and Planetary Science Letters. 34 (1): 152. Bibcode:1977E&PSL..34..152H. doi:10.1016/0012-821X(77)90116-9.
  49. ^ Anders, E; Ebihara, M (Nov 1982). "Solar-system abundances of the elements". Geochimica et Cosmochimica Acta. 46 (11): 2363. Bibcode:2014pacs.book...15P. doi:10.1016/0016-7037(82)90208-3.
  50. ^ Suess, H (1949). "Die kosmische häufigkeit der chemischen elemente". Experientia. 5 (7): 266–70. doi:10.1007/BF02149939. PMID 18146573.
  51. ^ Suess, H Urey H (Jan 1956). "Abundances of the Elements". Rev. Mod. Phys. 28 (1): 53. Bibcode:1956RvMP...28...53S. doi:10.1103/RevModPhys.28.53.
  52. ^ Asplund, M; Grevesse, N; Sauval, AJ; Scott, P (2009). "The chemical composition of the Sun". Annual Reviews of Astronomy and Astrophysics. 47 (1): 481–522. arXiv:0909.0948. Bibcode:2009ARA&A..47..481A. doi:10.1146/annurev.astro.46.060407.145222.
  53. ^ Anders, E (Dec 1964). "Origin, age, and composition of meteorites". Space Science Reviews. 3 (5–6): 5. Bibcode:1964SSRv....3..583A. doi:10.1007/BF00177954.
  54. ^ a b Goswami, A; Eswar Reddy, B, eds. (2010). "Solar system abundances of the elements". Principles and Perspectives in Cosmochemistry: Lecture Notes of the Kodai School on 'Synthesis of Elements in Stars' held at Kodaikanal Observatory, India, April 29 - May 13, 2008. Heidelberg: Springer-Verlag. p. 379. ISBN 978-3-642-10351-3.
  55. ^ a b Davis, A (2014). "Solar System Abundances of the Elements". Planets, Asteriods, Comets and The Solar System, Treatise on Geochemistry, Vol. 2 (2nd ed.). Elsevier. p. 21. ISBN 978-0080999432.
  56. ^ Leitner, J; Hoppe, P; Metzler, K; Haenecour, P; Floss, C; Vollmer, C (2015). The Presolar Grain Inventory Of CM Chondrites. 78th Meteoritical Society Meeting. Bibcode:2015LPICo1856.5178L.
  57. ^ Huss, G; Meshik, A; Smith, J; Hohenberg, C (Dec 2003). "Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula". Geochimica et Cosmochimica Acta. 67 (24): 4823. Bibcode:2003GeCoA..67.4823H. doi:10.1016/j.gca.2003.07.019.
  58. ^ Zinner, E; Amari, S; Guinness, R; Nguyen, A (Dec 2003). "Presolar spinel grains from the Murray and Murchison carbonaceous chondrites". Geochimica et Cosmochimica Acta. 67 (24): 5083. Bibcode:2003GeCoA..67.5083Z. doi:10.1016/S0016-7037(03)00261-8.
  59. ^ Moissan, H (1904). "Investigation of the Canon Diablo Meteorite". Comptes Rendu. De l'Acad. Sci. Paris. 139: 773.
  60. ^ Ksanda, C; Henderson, E (1939). "Identification of diamond in the Canyon Diablo iron". American Mineralogist. 24: 677.
  61. ^ Laspeyres, H; Kaiser, E (1895). "Quartz and Zerkonkrystall im Meteoreisen Toluca von Mexico". Zeitschrift fur Krystallographie und Mineralogie. 24: 485.
  62. ^ Brett, R (1967). "Cohenite: its occurrence and a proposed origin". Geochimica et Cosmochimica Acta. 31 (2): 143. Bibcode:1967GeCoA..31..143B. doi:10.1016/S0016-7037(67)80042-5.
  63. ^ Nagy, B; Andersen, C (1964). "Electron probe microanalysis of some carbonate, sulfate and phosphate minerals in the Orgueil meteorite". American Mineralogist. 49: 1730.
  64. ^ Sofe, M; Lee, M; Lindgren, P; Smith, C (2011). CL Zoning of Calcite in CM Carbonaceous Chondrites and its Relationship to Degree of Aqueous Alteration. 74th Meteoritical Society Meeting.
  65. ^ de Leuw, S; Rubin, A; Wasson, J (Jul 2010). "Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites". Meteoritics & Planetary Science. 45 (4): 513. Bibcode:2010M&PS...45..513D. doi:10.1111/j.1945-5100.2010.01037.x.
  66. ^ Lee, M; Lindgren, P; Sofe, M (Nov 2014). "Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration". Geochimica et Cosmochimica Acta. 144: 126. Bibcode:2014GeCoA.144..126L. doi:10.1016/j.gca.2014.08.019.
  67. ^ Cody, G; Alexander, C (Feb 2005). "NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups". Geochimica et Cosmochimica Acta. 69 (4): 1085. Bibcode:2005GeCoA..69.1085C. doi:10.1016/j.gca.2004.08.031.
  68. ^ Cronin, J Pizzarello S; Frye, J (Feb 1987). "13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites". Geochimica et Cosmochimica Acta. 51 (2): 299. Bibcode:1982Metic..17..200C. doi:10.1016/0016-7037(87)90242-0.
  69. ^ Easton, A; Lovering, J (1963). "The analysis of chondritic meteorites". Geochimica et Cosmochimica Acta. 27 (7): 753. Bibcode:1963GeCoA..27..753E. doi:10.1016/0016-7037(63)90040-1.
  70. ^ Moss, A; Hey, M; Elliott, C; Easton, A (Mar 1967). "Methods for the Chemical Analysis of Meteorites II: The major and some minor constituents of chondrites". Mineralogical Magazine. 36 (277): 101. Bibcode:1967MinM...36..101M. doi:10.1180/minmag.1967.036.277.17.
  71. ^ a b Briggs, M; Mamikunian, G (May 1963). "Organic Constituents of the Carbonaceous Chondrites". Space Science Reviews. 1 (4): 647. Bibcode:1963SSRv....1..647B. doi:10.1007/BF00212447.
  72. ^ Remusat, L; Le Guillou, C; Rouzaud, J; Binet, L; Derenne, S; Robert, F (Jan 2007). "Molecular study of insoluble organic matter in Kainsaz CO3 carbonaceous chondrite: Comparison with CI and CM IOM". Meteoritics & Planetary Science. 43 (7): 1099. doi:10.1111/j.1945-5100.2008.tb01115.x.
  73. ^ Degens, E; Bajor, M (1963). "Amino acids and sugars in the bruderheim and Murray meteorite". Die Naturwissenschaften. 49 (24): 605. doi:10.1007/BF01178050.
  74. ^ Kaplan, I; Degens, E; Reuter, J (Jul 1963). "Organic compounds in stony meteorites". Geochimica et Cosmochimica Acta. 27 (7): 805. Bibcode:1963GeCoA..27..805K. doi:10.1016/0016-7037(63)90045-0.
  75. ^ Kallman Bijl, H, ed. (1960). "Extraterrestrial Life: Some Organic Constituents of Meteorites". Space Research. Amsterdam: North-Holland Publishing Company. p. 1171.
  76. ^ Briggs, M (1961). "Organic constituents of meteorites". Nature. 191 (4794): 1137. Bibcode:1961Natur.191.1137B. doi:10.1038/1911137a0.
  77. ^ Hamilton, P. B. (1965). "Amino acids on hands". Nature. 205 (4968): 284–5. Bibcode:1965Natur.205..284H. doi:10.1038/205284b0. PMID 14270714.
  78. ^ Oró, J; Skewes, H (1965). "Free Amino-Acids on Human Fingers: The Question of Contamination in Microanalysis". Nature. 207 (5001): 1042. Bibcode:1965Natur.207.1042O. doi:10.1038/2071042a0.
  79. ^ Nuevo, M; Cooper, G; Sandford, S (2018). "Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites". Nature Communications. 9: 5276. Bibcode:2018NatCo...9.5276N. doi:10.1038/s41467-018-07693-x.
  80. ^ Kvenvolden, K; Lawless, J; Pering, K; Peterson, E; Flores, J; Ponnamperuma, C (Dec 1970). "Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite". Nature. 228 (5275): 923–6. Bibcode:1970Natur.228..923K. doi:10.1038/228923a0. PMID 5482102.
  81. ^ Oró, J; Gibert, J; Lichtenstein, H; Wikstrom, S; Flory, D (Mar 1971). "Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite". Nature. 230 (5289): 105. Bibcode:1971Natur.230..105O. doi:10.1038/230105a0. PMID 4927006.
  82. ^ Koga, T; H, Naraoka (Apr 2017). "A new family of extraterrestrial amino acids in the Murchison meteorite". Nature Scientific Reports. 7 (1): 636. Bibcode:2017NatSR...7..636K. doi:10.1038/s41598-017-00693-9. PMC 5428853. PMID 28377577.
  83. ^ a b Engel, M; Macko, S (Sep 1997). "Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite". Nature. 389 (6648): 265. Bibcode:1997Natur.389..265E. doi:10.1038/38460. PMID 9305838.
  84. ^ Elsila, J; Charnley, S; Burton, A; Glavin, D; Dworkin, J (Sep 2012). "Compound‐specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways". M. 47 (9): 1517. Bibcode:2012M&PS...47.1517E. doi:10.1111/j.1945-5100.2012.01415.x. hdl:2060/20120014482.
  85. ^ Mueller, G (Aug 1953). "The properties and theory of genesis of the carbonaceous complex within the cold bokevelt meteorite". Geochimica et Cosmochimica Acta. 4 (1–2): 1. Bibcode:1953GeCoA...4....1M. doi:10.1016/0016-7037(53)90061-1.
  86. ^ Engel, M Nagy, B (Apr 1982). "Distribution and enantiomeric composition of amino acids in the Murchison meteorite". Nature. 296 (5860): 837. Bibcode:1982Natur.296..837E. doi:10.1038/296837a0.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  87. ^ Pizzarello, S; Yarnes, C (Aug 2018). "Chiral molecules in space and their possible passage to planetary bodies recorded by meteorites". Earth and Planetary Science Letters. 496: 198. Bibcode:2018E&PSL.496..198P. doi:10.1016/j.epsl.2018.05.026.
  88. ^ Pizzarello, S; Yarnes, C (Dec 2018). "The soluble organic compounds of the Mukundpura meteorite: A new CM chondrite fall". Planetary and Space Science. 164: 127. Bibcode:2018P&SS..164..127P. doi:10.1016/j.pss.2018.07.002.
  89. ^ Clayton, R; Onuma, N; Grossman, L; Mayeda, T (Mar 1977). "Distribution of the pre-solar component in Allende and other carbonaceous chondrites". Earth and Planetary Science Letters. 32 (2): 209. Bibcode:1977E&PSL..34..209C. doi:10.1016/0012-821X(77)90005-X.
  90. ^ Clayton, R; Mayeda, T (Jul 1999). "Oxygen isotope studies of carbonaceous chondrites". Geochimica et Cosmochimica Acta. 63 (13–14): 2089. Bibcode:1999GeCoA..63.2089C. doi:10.1016/S0016-7037(99)00090-3.
  91. ^ Greenwood, R; Howard, K; Franchi, I; Zolensky, M; Buchanan, P; Gibson, J (Mar 2014). Oxygen Isotope Evidence For The Relationship Between CM And CO Chondrites: Could They Both Coexist On A Single Asteroid?. 45th LPSC.
  92. ^ Hanna, R; Ketcham, R; Zolensky, M; Behr, W (Dec 2015). "Impact-induced brittle deformation, porosity loss, and aqueous alteration in the Murchison CM chondrite". Geochimica et Cosmochimica Acta. 171: 256. Bibcode:2015GeCoA.171..256H. doi:10.1016/j.gca.2015.09.005.
  93. ^ Merrill, G (1921). "On metamorphism in meteorites". Bull. Geol. Soc. Amer. 32 (4): 395. Bibcode:1921GSAB...32..395M. doi:10.1130/GSAB-32-395.
  94. ^ Hildebrand, A; McCausland, P; Brown, P; Longstaffe, F; Russell, S; Tagliaferri, E (2006). "The fall and recovery of the Tagish Lake meteorite". Meteoritics & Planetary Science. 41 (3): 407. Bibcode:2006M&PS...41..407H. doi:10.1111/j.1945-5100.2006.tb00471.x.
  95. ^ Flynn, G; Consolmagno, G; Brown, P; Macke, R (Sep 2018). "Physical properties of the stone meteorites: Implications for the properties of their parent bodies". Geochemistry. 78 (3): 269. Bibcode:2018ChEG...78..269F. doi:10.1016/j.chemer.2017.04.002.
  96. ^ Heck, P; Schmitz, B; Bottke, W; Rout, S; Kita, N (Jan 2017). "Rare meteorites common in the Ordovician period". Nature Astronomy. 1 (2): 0035. Bibcode:2017NatAs...1E..35H. doi:10.1038/s41550-016-0035.
  97. ^ Grady, M; Hutchison, R (1998). Meteorites: Flux with Time and Impact Effects. Geological Society of London. pp. 67–70. ISBN 9781862390171. sec. The frequency of meteorite types
  98. ^ Cassidy, W; Rancitelli, L (Mar 1982). "Antarctic Meteorites: The abundant material being discovered in Antarctica may shed light on the evolution of meteorite parent bodies and the history of the solar system". American Scientist. 70 (2): 156–164. JSTOR 27851347.
  99. ^ Lauretta, D; McSween, H, eds. (2006). Meteorites and the Early Solar System II. Tucson: University of Arizona Press. p. 853. ISBN 9780816525621. Ch. Weathering of Chondritic Meteorites, Bland, P., Zolensky, M., Benedix, G., Sephton, M.
  100. ^ Korotev, Randy L. "Some Meteorite Statistics". Department of Earth and Planetary Sciences, Washington University in St. Louis. Washington University in St. Louis. Retrieved 14 Sep 2019.
  101. ^ Encyclopedia of Planetary Science. Encyclopedia of Earth Science Series. Dordrecht: Springer. 1997. p. 486. ISBN 978-0-412-06951-2. Chapter: Meteorite parent bodies, Britt, D., Lebofsky, L.
  102. ^ Cloutis, E; Binzel, R; Gaffey, M (Feb 2014). "Establishing Asteroid–Meteorite Links". Elements. 10: 25. doi:10.2113/gselements.10.1.25.
  103. ^ Lee, M Cohen B King A Greenwood R (Jul 2019). "The diversity of CM carbonaceous chondrite parent bodies explored using Lewis Cliff 85311". Geochimica et Cosmochimica Acta. 257: 224–244. Bibcode:2019GeCoA.264..224L. doi:10.1016/j.gca.2019.07.027.
  104. ^ Burbine, T (2016). "Advances in determining asteroid chemistries and mineralogies". Chemie de Erde. 76 (2): 181. Bibcode:2016ChEG...76..181B. doi:10.1016/j.chemer.2015.09.003.
  105. ^ Lantz, C; Clark, B; Barucci, M; Lauretta, D (May 2013). "Evidence for the effects of space weathering spectral signatures on low albedo asteroids". Astronomy and Astrophysics. 554: A138. Bibcode:2013A&A...554A.138L. doi:10.1051/0004-6361/201321593.
  106. ^ Matsuoka, M; Nakamura, T; Kimura, Y; Hiroi, T; Nakamura, R; Okumura, S; Sasaki, S (Mar 2015). "Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids". Icarus. 254: 135. Bibcode:2015Icar..254..135M. doi:10.1016/j.icarus.2015.02.029.
  107. ^ Thompson, M; Loeffler, M; Morris, R; Keller, L; Christoffersen, R (Feb 2019). "Spectral and chemical effects of simulated space weathering of the Murchison CM2 carbonaceous chondrite". Icarus. 319: 499. Bibcode:2019Icar..319..499T. doi:10.1016/j.icarus.2018.09.022.
  108. ^ Bland, P; Alard, O; Benedix, G; Kearsley, A (Sep 2005). "Volatile fractionation in the early solar system and chondrule/matrix complementarity". PNAS. 102 (39): 13755–60. Bibcode:2005PNAS..10213755B. doi:10.1073/pnas.0501885102. PMC 1224360. PMID 16174733.
  109. ^ Franchi, I; Greenwood, R; Howard, K; King, A; Lee, M; Anand, M; Findlay, R (2019). Oxygen Isotope Variation Of CM And Related Chondrites: Multiple Parent Bodies Or A Single Heterogeneous Source?. Meteoritical Society Meeting, 2019. p. 6482.
  110. ^ Herrin, J; Zolensky, M; Cartwright, J; Mittlefehldt, D; Ross, D (Mar 2011). "Carbonaceous Chondrite-Rich Howardites; The Potential For Hydrous Lithologies On The HED Parent". Lunar and Planetary Science Conference (1608): 2806. Bibcode:2011LPI....42.2806H. {{cite journal}}: Unknown parameter |conference= ignored (help)