Mobilome: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
m Add: pages, pmid, pmc. | You can use this bot yourself. Report bugs here.| Activated by User:Grimes2 | via #UCB_webform
consistent citation formatting
Line 1: Line 1:
[[File:DNA Transposon.png|thumb|(A) [[Transposable element|Transposable elements]] are flanked by inverted [[Tandem repeat|tandem repeats]] (TIRs). (B) [[Transposase|Transposases]] cleave the transposable element at the TIRs. The free transposable element inserts into another part of the [[genome]].|alt=|260x260px]]
[[File:DNA Transposon.png|thumb|(A) [[Transposable element|Transposable elements]] are flanked by inverted [[Tandem repeat|tandem repeats]] (TIRs). (B) [[Transposase|Transposases]] cleave the transposable element at the TIRs. The free transposable element inserts into another part of the [[genome]].|alt=|260x260px]]


The '''mobilome''' is the entire set of [[mobile genetic elements]] in a [[genome]]. Mobilomes are found in [[Eukaryote|eukaryotes]]<ref>{{Cite journal|last=Hurst|first=Gregory D. D.|last2=Werren|first2=John H.|date=August 2001|title=The role of selfish genetic elements in eukaryotic evolution|journal=Nature Reviews Genetics|language=en|volume=2|issue=8|pages=597–606|doi=10.1038/35084545|pmid=11483984|issn=1471-0064}}</ref>, [[Prokaryote|prokaryotes]]<ref>{{Cite journal|last=Toussaint|first=Ariane|last2=Merlin|first2=Christophe|date=2002-01-01|title=Mobile Elements as a Combination of Functional Modules|journal=Plasmid|volume=47|issue=1|pages=26–35|doi=10.1006/plas.2001.1552|pmid=11798283|issn=0147-619X}}</ref>, and [[Virus|viruses]]<ref>{{Cite journal|last=Miller|first=David Wayne|last2=Miller|first2=Lois K.|date=October 1982|title=A virus mutant with an insertion of a copia -like transposable element|journal=Nature|language=en|volume=299|issue=5883|pages=562–564|doi=10.1038/299562a0|pmid=6289125|issn=1476-4687|bibcode=1982Natur.299..562M}}</ref>. The compositions of mobilomes differ among lineages of life, with [[Transposable element|transposable elements]] being the major mobile elements in eukaryotes, and [[Plasmid|plasmids]] and [[prophages]] being the major types in prokaryotes.<ref name=":0">{{Citation|last=Siefert|first=Janet L.|chapter=Defining the Mobilome|date=2009|work=Horizontal Gene Transfer: Genomes in Flux|pages=13–27|editor-last=Gogarten|editor-first=Maria Boekels|series=Methods in Molecular Biology|publisher=Humana Press|language=en|doi=10.1007/978-1-60327-853-9_2|pmid=19271177|isbn=9781603278539|editor2-last=Gogarten|editor2-first=Johann Peter|editor3-last=Olendzenski|editor3-first=Lorraine C.|title=Horizontal Gene Transfer|volume=532}}</ref> [[Virophage|Virophages]] contribute to the viral mobilome.<ref name=":3">{{Cite journal|last=Bekliz|first=Meriem|last2=Colson|first2=Philippe|last3=La Scola|first3=Bernard|date=November 2016|title=The Expanding Family of Virophages|journal=Viruses|language=en|volume=8|issue=11|pages=317|doi=10.3390/v8110317|pmid=27886075|pmc=5127031}}</ref>
The '''mobilome''' is the entire set of [[mobile genetic elements]] in a [[genome]]. Mobilomes are found in [[Eukaryote|eukaryotes]],<ref>{{cite journal | vauthors = Hurst GD, Werren JH | title = The role of selfish genetic elements in eukaryotic evolution | journal = Nature Reviews. Genetics | volume = 2 | issue = 8 | pages = 597–606 | date = August 2001 | pmid = 11483984 | doi = 10.1038/35084545 }}</ref> [[Prokaryote|prokaryotes]],<ref>{{cite journal | vauthors = Toussaint A, Merlin C | title = Mobile elements as a combination of functional modules | journal = Plasmid | volume = 47 | issue = 1 | pages = 26–35 | date = January 2002 | pmid = 11798283 | doi = 10.1006/plas.2001.1552 }}</ref> and [[Virus|viruses]].<ref>{{cite journal | vauthors = Miller DW, Miller LK | title = A virus mutant with an insertion of a copia-like transposable element | journal = Nature | volume = 299 | issue = 5883 | pages = 562–4 | date = October 1982 | pmid = 6289125 | doi = 10.1038/299562a0 | bibcode = 1982Natur.299..562M }}</ref> The compositions of mobilomes differ among lineages of life, with [[Transposable element|transposable elements]] being the major mobile elements in eukaryotes, and [[Plasmid|plasmids]] and [[prophages]] being the major types in prokaryotes.<ref name=":0">{{cite book | vauthors = Siefert JL | chapter = Defining the mobilome | series = Methods in Molecular Biology | volume = 532 | pages = 13–27 | date = 2009 | pmid = 19271177 | doi = 10.1007/978-1-60327-853-9_2 | publisher = Humana Press | isbn = 9781603278539 | title = Horizontal Gene Transfer: Genomes in Flux | editor-first = Maria Boekels | editor-last = Gogarten | editor2-first = Johann Peter | editor2-last = Gogarten | editor3-first = Lorraine C. | editor3-last = Olendzenski | name-list-format = vanc }}</ref> [[Virophage|Virophages]] contribute to the viral mobilome.<ref name=":3">{{cite journal | vauthors = Bekliz M, Colson P, La Scola B | title = The Expanding Family of Virophages | journal = Viruses | volume = 8 | issue = 11 | pages = 317 | date = November 2016 | pmid = 27886075 | pmc = 5127031 | doi = 10.3390/v8110317 }}</ref>


== Mobilome in eukaryotes ==
== Mobilome in eukaryotes ==
[[Transposable element]]s are elements that can move about or propagate within the genome, and are the major constituents of the [[eukaryote|eukaryotic]] mobilome.<ref name=":0" /> Transposable elements can be regarded as genetic [[Parasitism|parasites]] because they exploit the host [[Cell (biology)|cell's]] [[Transcription (biology)|transcription]] and [[Translation (biology)|translation]] mechanisms to extract and insert themselves in different parts of the genome, regardless of the [[Phenotype|phenotypic]] effect on the host.<ref>{{Cite journal|last=Wallau|first=Gabriel Luz|last2=Ortiz|first2=Mauro Freitas|last3=Loreto|first3=Elgion Lucio Silva|date=2012|title=Horizontal Transposon Transfer in Eukarya: Detection, Bias, and Perspectives|journal=Genome Biology and Evolution|volume=4|issue=8|pages=801–811|doi=10.1093/gbe/evs055|pmid=22798449|pmc=3516303|issn=1759-6653}}</ref>
[[Transposable element]]s are elements that can move about or propagate within the genome, and are the major constituents of the [[eukaryote|eukaryotic]] mobilome.<ref name=":0" /> Transposable elements can be regarded as genetic [[Parasitism|parasites]] because they exploit the host [[Cell (biology)|cell's]] [[Transcription (biology)|transcription]] and [[Translation (biology)|translation]] mechanisms to extract and insert themselves in different parts of the genome, regardless of the [[Phenotype|phenotypic]] effect on the host.<ref>{{cite journal | vauthors = Wallau GL, Ortiz MF, Loreto EL | title = Horizontal transposon transfer in eukarya: detection, bias, and perspectives | journal = Genome Biology and Evolution | volume = 4 | issue = 8 | pages = 689–99 | date = 2012 | pmid = 22798449 | pmc = 3516303 | doi = 10.1093/gbe/evs055 }}</ref>


Eukaryotic transposable elements were first discovered in [[maize]] (''Zea mays'') in which [[Kernel (seed)|kernels]] showed a dotted color pattern.<ref>{{Cite journal|last=Coe|first=Edward H.|date=November 2001|title=The origins of maize genetics|journal=Nature Reviews Genetics|language=en|volume=2|issue=11|pages=898–905|doi=10.1038/35098524|pmid=11715045|issn=1471-0064}}</ref> [[Barbara McClintock]] described the maize [[Ac/Ds transposable controlling elements|Ac/Ds system]] in which the Ac [[Locus (genetics)|locus]] promotes the excision of the Ds locus from the genome, and excised Ds elements can [[Mutation|mutate]] [[Gene|genes]] responsible for [[Biological pigment|pigment]] production by [[Insertional mutagenesis|inserting]] into their [[Coding region|coding regions]].<ref>{{Cite journal|last=McClintock|first=Barbara|date=1950-06-01|title=The origin and behavior of mutable loci in maize|journal=Proceedings of the National Academy of Sciences|language=en|volume=36|issue=6|pages=344–355|doi=10.1073/pnas.36.6.344|issn=0027-8424|pmid=15430309|pmc=1063197|bibcode=1950PNAS...36..344M}}</ref>
Eukaryotic transposable elements were first discovered in [[maize]] (''Zea mays'') in which [[Kernel (seed)|kernels]] showed a dotted color pattern.<ref>{{cite journal | vauthors = Coe EH | title = The origins of maize genetics | journal = Nature Reviews. Genetics | volume = 2 | issue = 11 | pages = 898–905 | date = November 2001 | pmid = 11715045 | doi = 10.1038/35098524 }}</ref> [[Barbara McClintock]] described the maize [[Ac/Ds transposable controlling elements|Ac/Ds system]] in which the Ac [[Locus (genetics)|locus]] promotes the excision of the Ds locus from the genome, and excised Ds elements can [[Mutation|mutate]] [[Gene|genes]] responsible for [[Biological pigment|pigment]] production by [[Insertional mutagenesis|inserting]] into their [[Coding region|coding regions]].<ref>{{cite journal | vauthors = McClintock B | title = The origin and behavior of mutable loci in maize | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 36 | issue = 6 | pages = 344–55 | date = June 1950 | pmid = 15430309 | pmc = 1063197 | doi = 10.1073/pnas.36.6.344 | bibcode = 1950PNAS...36..344M }}</ref>


Other examples of transposable elements include: [[Saccharomyces cerevisiae|yeast]] (''Saccharomyces cerevisiae'') [[Ty5 retrotransposon|Ty elements]], a [[retrotransposon]] which encodes a [[reverse transcriptase]] to convert its [[Transcription (biology)|mRNA transcript]] into DNA which can then insert into other parts of the genome;<ref>{{Cite journal|last=Mellor|first=Jane|last2=Malim|first2=Michael H.|last3=Gull|first3=Keith|last4=Tuite|first4=Mick F.|last5=McCready|first5=Shirley|last6=Dibbayawan|first6=Teresa|last7=Kingsman|first7=Susan M.|last8=Kingsman|first8=Alan J.|date=December 1985|title=Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast|journal=Nature|language=en|volume=318|issue=6046|pages=583–586|doi=10.1038/318583a0|pmid=2415827|issn=1476-4687|bibcode=1985Natur.318..583M}}</ref><ref>{{Cite journal|last=Garfinkel|first=David J.|last2=Boeke|first2=Jef D.|last3=Fink|first3=Gerald R.|date=1985-09-01|title=Ty element transposition: Reverse transcriptase and virus-like particles|journal=Cell|volume=42|issue=2|pages=507–517|doi=10.1016/0092-8674(85)90108-4|pmid=2411424|issn=0092-8674}}</ref> and [[Drosophila melanogaster|fruit fly]] (''Drosophila melanogaster'') [[P element|P-elements]], which randomly inserts into the genome to cause mutations in [[Germ cell|germ line cells]], but not in [[somatic cells]].<ref>{{Cite journal|last=Laski|first=Frank A.|last2=Rio|first2=Donald C.|last3=Rubin|first3=Gerald M.|date=1986-01-17|title=Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing|journal=Cell|volume=44|issue=1|pages=7–19|doi=10.1016/0092-8674(86)90480-0|pmid=3000622|issn=0092-8674}}</ref>
Other examples of transposable elements include: [[Saccharomyces cerevisiae|yeast]] (''Saccharomyces cerevisiae'') [[Ty5 retrotransposon|Ty elements]], a [[retrotransposon]] which encodes a [[reverse transcriptase]] to convert its [[Transcription (biology)|mRNA transcript]] into DNA which can then insert into other parts of the genome;<ref>{{cite journal | vauthors = Mellor J, Malim MH, Gull K, Tuite MF, McCready S, Dibbayawan T, Kingsman SM, Kingsman AJ | display-authors = 6 | title = Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast | journal = Nature | volume = 318 | issue = 6046 | pages = 583–6 | date = December 1985 | pmid = 2415827 | doi = 10.1038/318583a0 | bibcode = 1985Natur.318..583M }}</ref><ref>{{cite journal | vauthors = Garfinkel DJ, Boeke JD, Fink GR | title = Ty element transposition: reverse transcriptase and virus-like particles | journal = Cell | volume = 42 | issue = 2 | pages = 507–17 | date = September 1985 | pmid = 2411424 | doi = 10.1016/0092-8674(85)90108-4 }}</ref> and [[Drosophila melanogaster|fruit fly]] (''Drosophila melanogaster'') [[P element|P-elements]], which randomly inserts into the genome to cause mutations in [[Germ cell|germ line cells]], but not in [[somatic cells]].<ref>{{cite journal | vauthors = Laski FA, Rio DC, Rubin GM | title = Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing | journal = Cell | volume = 44 | issue = 1 | pages = 7–19 | date = January 1986 | pmid = 3000622 | doi = 10.1016/0092-8674(86)90480-0 }}</ref>


== Mobilome in prokaryotes ==
== Mobilome in prokaryotes ==
[[File:Conjugation.svg|left|thumb|alt=|[[Bacterial conjugation]]. (1) Production of [[pilus]]. (2) Pilus connects two [[bacteria]]. (3) One strand of [[plasmid]] [[DNA]] moves into the recipient. (4) Both bacteria contain identical plasmids.]]
[[File:Conjugation.svg|left|thumb|alt=|[[Bacterial conjugation]]. (1) Production of [[pilus]]. (2) Pilus connects two [[bacteria]]. (3) One strand of [[plasmid]] [[DNA]] moves into the recipient. (4) Both bacteria contain identical plasmids.]]
Plasmids were discovered in the 1940s as genetic materials outside of [[Bacteria|bacterial]] [[Chromosome|chromosomes]].<ref>{{Cite journal|last=Sonneborn|first=T M|date=April 1950|title=The cytoplasm in heredity|journal=Heredity|language=en|volume=4|issue=1|pages=11–36|doi=10.1038/hdy.1950.2|pmid=15415003|issn=0018-067X}}</ref> Prophages are genomes of [[bacteriophage]]<nowiki/>s (a type of virus) that are inserted into bacterial chromosomes; prophages can then be spread to other bacteria through the [[lytic cycle]] and [[lysogenic cycle]] of [[viral replication]].<ref name=":1">{{Cite journal|last=Bertani|first=G.|date=1953-01-01|title=Lysogenic Versus Lytic Cycle of Phage Multiplication|journal=Cold Spring Harbor Symposia on Quantitative Biology|language=en|volume=18|pages=65–70|doi=10.1101/SQB.1953.018.01.014|issn=0091-7451|pmid=13168970}}</ref>
Plasmids were discovered in the 1940s as genetic materials outside of [[Bacteria|bacterial]] [[Chromosome|chromosomes]].<ref>{{cite journal | vauthors = Sonneborn TM | title = The cytoplasm in heredity | journal = Heredity | volume = 4 | issue = 1 | pages = 11–36 | date = April 1950 | pmid = 15415003 | doi = 10.1038/hdy.1950.2 }}</ref> Prophages are genomes of [[bacteriophage]]<nowiki/>s (a type of virus) that are inserted into bacterial chromosomes; prophages can then be spread to other bacteria through the [[lytic cycle]] and [[lysogenic cycle]] of [[viral replication]].<ref name=":1">{{cite journal | vauthors = Bertani G | title = Lysogenic versus lytic cycle of phage multiplication | journal = Cold Spring Harbor Symposia on Quantitative Biology | volume = 18 | pages = 65–70 | date = 1953-01-01 | pmid = 13168970 | doi = 10.1101/SQB.1953.018.01.014 }}</ref>


While transposable elements are also found in prokaryotic genomes<ref>{{Cite journal|last=Campbell|first=A.|last2=Berg|first2=D.|last3=Botstein|first3=D.|last4=Lederberg|first4=E. M.|last5=Novick|first5=R. P.|last6=Starlinger|first6=P.|last7=Szybalski|first7=W.|date=1979-03-01|title=Nomenclature of transposable elements in prokaryotes|journal=Gene|volume=5|issue=3|pages=197–206|doi=10.1016/0378-1119(79)90078-7|pmid=467979|issn=0378-1119}}</ref>, the most common mobile genetic elements in the prokaryotic genome are [[Plasmid|plasmids]] and [[prophages]].<ref name=":0" />
While transposable elements are also found in prokaryotic genomes,<ref>{{cite journal | vauthors = Campbell A, Berg DE, Botstein D, Lederberg EM, Novick RP, Starlinger P, Szybalski W | title = Nomenclature of transposable elements in prokaryotes | journal = Gene | volume = 5 | issue = 3 | pages = 197–206 | date = March 1979 | pmid = 467979 | doi = 10.1016/0378-1119(79)90078-7 }}</ref> the most common mobile genetic elements in the prokaryotic genome are [[Plasmid|plasmids]] and [[prophages]].<ref name=":0" />


Plasmids and prophages can move between genomesn through [[bacterial conjugation]], allowing [[horizontal gene transfer]].<ref>{{Cite journal|last=Juhas|first=Mario|date=2015-01-02|title=Horizontal gene transfer in human pathogens|journal=Critical Reviews in Microbiology|volume=41|issue=1|pages=101–108|doi=10.3109/1040841X.2013.804031|pmid=23862575|issn=1040-841X|url=http://www.dspace.cam.ac.uk/handle/1810/244728}}</ref> Plasmids often carry genes that are responsible for bacterial [[Antimicrobial resistance|antibiotic resistance]]; as these plasmids replicate and pass from one genome to another, the whole bacterial [[Population genetics|population]] can quickly [[Adaptation|adapt]] to the [[antibiotic]].<ref>{{Cite journal|last=Harrison|first=Ellie|last2=Brockhurst|first2=Michael A.|date=2012-06-01|title=Plasmid-mediated horizontal gene transfer is a coevolutionary process|journal=Trends in Microbiology|volume=20|issue=6|pages=262–267|doi=10.1016/j.tim.2012.04.003|pmid=22564249|issn=0966-842X}}</ref><ref>{{Cite journal|last=Gillings|first=Michael R.|date=2013|title=Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome|journal=Frontiers in Microbiology|volume=4|pages=4|doi=10.3389/fmicb.2013.00004|pmid=23386843|pmc=3560386|issn=1664-302X}}</ref> Prophages can loop out of bacterial chromosomes to produce bacteriophages that go on to infect other bacteria with the prophages; this allows prophages to propagate quickly among the bacterial population, to the harm of the bacterial host.<ref name=":1" />
Plasmids and prophages can move between genomesn through [[bacterial conjugation]], allowing [[horizontal gene transfer]].<ref>{{cite journal | vauthors = Juhas M | title = Horizontal gene transfer in human pathogens | journal = Critical Reviews in Microbiology | volume = 41 | issue = 1 | pages = 101–8 | date = February 2015 | pmid = 23862575 | doi = 10.3109/1040841X.2013.804031 | url = http://www.dspace.cam.ac.uk/handle/1810/244728 }}</ref> Plasmids often carry genes that are responsible for bacterial [[Antimicrobial resistance|antibiotic resistance]]; as these plasmids replicate and pass from one genome to another, the whole bacterial [[Population genetics|population]] can quickly [[Adaptation|adapt]] to the [[antibiotic]].<ref>{{cite journal | vauthors = Harrison E, Brockhurst MA | title = Plasmid-mediated horizontal gene transfer is a coevolutionary process | journal = Trends in Microbiology | volume = 20 | issue = 6 | pages = 262–7 | date = June 2012 | pmid = 22564249 | doi = 10.1016/j.tim.2012.04.003 }}</ref><ref>{{cite journal | vauthors = Gillings MR | title = Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome | journal = Frontiers in Microbiology | volume = 4 | pages = 4 | date = 2013 | pmid = 23386843 | pmc = 3560386 | doi = 10.3389/fmicb.2013.00004 }}</ref> Prophages can loop out of bacterial chromosomes to produce bacteriophages that go on to infect other bacteria with the prophages; this allows prophages to propagate quickly among the bacterial population, to the harm of the bacterial host.<ref name=":1" />


== Mobilome in viruses ==
== Mobilome in viruses ==
Discovered in 2008 in a strain of ''Acanthamoeba castellanii [[Mimiviridae|mimivirus]]''<ref name=":2">{{Cite journal|last=La Scola|first=Bernard|last2=Desnues|first2=Christelle|last3=Pagnier|first3=Isabelle|last4=Robert|first4=Catherine|last5=Barrassi|first5=Lina|last6=Fournous|first6=Ghislain|last7=Merchat|first7=Michèle|last8=Suzan-Monti|first8=Marie|last9=Forterre|first9=Patrick|last10=Koonin|first10=Eugene|last11=Raoult|first11=Didier|date=September 2008|title=The virophage as a unique parasite of the giant mimivirus|journal=Nature|language=en|volume=455|issue=7209|pages=100–104|doi=10.1038/nature07218|pmid=18690211|issn=1476-4687|bibcode=2008Natur.455..100L}}</ref>, [[Virophage|virophages]] are an element of the virus mobilome.<ref name=":3" /> Virophages are viruses that [[Viral replication|replicate]] only when host cells are co-infected with [[Helper virus|helper viruses]].<ref name=":4">{{Cite journal|last=Claverie|first=Jean-Michel|last2=Abergel|first2=Chantal|date=2009|title=Mimivirus and its Virophage|journal=Annual Review of Genetics|volume=43|issue=1|pages=49–66|doi=10.1146/annurev-genet-102108-134255|pmid=19653859}}</ref> Following co-infection, helper viruses exploit the host cell's transcription/translation machinery to produce their own machinery; virophages replicate through the machinery of either the host cell or the viruses.<ref name=":4" /> The replication of virophages can negatively impact the replication of helper viruses.<ref name=":2" /><ref>{{Cite journal|last=Duponchel|first=Sarah|last2=Fischer|first2=Matthias G.|date=2019-03-21|title=Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses|journal=PLOS Pathogens|language=en|volume=15|issue=3|pages=e1007592|doi=10.1371/journal.ppat.1007592|issn=1553-7374|pmc=6428243|pmid=30897185}}</ref>
Discovered in 2008 in a strain of ''Acanthamoeba castellanii [[Mimiviridae|mimivirus]]'',<ref name=":2">{{cite journal | vauthors = La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D | display-authors = 6 | title = The virophage as a unique parasite of the giant mimivirus | journal = Nature | volume = 455 | issue = 7209 | pages = 100–4 | date = September 2008 | pmid = 18690211 | doi = 10.1038/nature07218 | bibcode = 2008Natur.455..100L }}</ref> [[Virophage|virophages]] are an element of the virus mobilome.<ref name=":3" /> Virophages are viruses that [[Viral replication|replicate]] only when host cells are co-infected with [[Helper virus|helper viruses]].<ref name=":4">{{cite journal | vauthors = Claverie JM, Abergel C | title = Mimivirus and its virophage | journal = Annual Review of Genetics | volume = 43 | issue = 1 | pages = 49–66 | date = 2009 | pmid = 19653859 | doi = 10.1146/annurev-genet-102108-134255 }}</ref> Following co-infection, helper viruses exploit the host cell's transcription/translation machinery to produce their own machinery; virophages replicate through the machinery of either the host cell or the viruses.<ref name=":4" /> The replication of virophages can negatively impact the replication of helper viruses.<ref name=":2" /><ref>{{cite journal | vauthors = Duponchel S, Fischer MG | title = Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses | journal = PLoS Pathogens | volume = 15 | issue = 3 | pages = e1007592 | date = March 2019 | pmid = 30897185 | pmc = 6428243 | doi = 10.1371/journal.ppat.1007592 }}</ref>


[[Sputnik virophage|Sputnik]]<ref name=":2" /><ref>{{Cite journal|last=Sun|first=Siyang|last2=Scola|first2=Bernard La|last3=Bowman|first3=Valorie D.|last4=Ryan|first4=Christopher M.|last5=Whitelegge|first5=Julian P.|last6=Raoult|first6=Didier|last7=Rossmann|first7=Michael G.|date=2010-01-15|title=Structural Studies of the Sputnik Virophage|journal=Journal of Virology|language=en|volume=84|issue=2|pages=894–897|doi=10.1128/JVI.01957-09|issn=0022-538X|pmid=19889775|pmc=2798384}}</ref> and [[mavirus]]<ref>{{Cite journal|last=Fischer|first=Matthias G.|last2=Hackl|first2=Thomas|date=December 2016|title=Host genome integration and giant virus-induced reactivation of the virophage mavirus|journal=Nature|language=en|volume=540|issue=7632|pages=288–291|doi=10.1038/nature20593|pmid=27929021|issn=1476-4687|bibcode=2016Natur.540..288F}}</ref> are examples of virophages.
[[Sputnik virophage|Sputnik]]<ref name=":2" /><ref>{{cite journal | vauthors = Sun S, La Scola B, Bowman VD, Ryan CM, Whitelegge JP, Raoult D, Rossmann MG | title = Structural studies of the Sputnik virophage | journal = Journal of Virology | volume = 84 | issue = 2 | pages = 894–7 | date = January 2010 | pmid = 19889775 | pmc = 2798384 | doi = 10.1128/JVI.01957-09 }}</ref> and [[mavirus]]<ref>{{cite journal | vauthors = Fischer MG, Hackl T | title = Host genome integration and giant virus-induced reactivation of the virophage mavirus | journal = Nature | volume = 540 | issue = 7632 | pages = 288–291 | date = December 2016 | pmid = 27929021 | doi = 10.1038/nature20593 | bibcode = 2016Natur.540..288F }}</ref> are examples of virophages.


== References ==
== References ==

Revision as of 05:49, 19 December 2019

(A) Transposable elements are flanked by inverted tandem repeats (TIRs). (B) Transposases cleave the transposable element at the TIRs. The free transposable element inserts into another part of the genome.

The mobilome is the entire set of mobile genetic elements in a genome. Mobilomes are found in eukaryotes,[1] prokaryotes,[2] and viruses.[3] The compositions of mobilomes differ among lineages of life, with transposable elements being the major mobile elements in eukaryotes, and plasmids and prophages being the major types in prokaryotes.[4] Virophages contribute to the viral mobilome.[5]

Mobilome in eukaryotes

Transposable elements are elements that can move about or propagate within the genome, and are the major constituents of the eukaryotic mobilome.[4] Transposable elements can be regarded as genetic parasites because they exploit the host cell's transcription and translation mechanisms to extract and insert themselves in different parts of the genome, regardless of the phenotypic effect on the host.[6]

Eukaryotic transposable elements were first discovered in maize (Zea mays) in which kernels showed a dotted color pattern.[7] Barbara McClintock described the maize Ac/Ds system in which the Ac locus promotes the excision of the Ds locus from the genome, and excised Ds elements can mutate genes responsible for pigment production by inserting into their coding regions.[8]

Other examples of transposable elements include: yeast (Saccharomyces cerevisiae) Ty elements, a retrotransposon which encodes a reverse transcriptase to convert its mRNA transcript into DNA which can then insert into other parts of the genome;[9][10] and fruit fly (Drosophila melanogaster) P-elements, which randomly inserts into the genome to cause mutations in germ line cells, but not in somatic cells.[11]

Mobilome in prokaryotes

Bacterial conjugation. (1) Production of pilus. (2) Pilus connects two bacteria. (3) One strand of plasmid DNA moves into the recipient. (4) Both bacteria contain identical plasmids.

Plasmids were discovered in the 1940s as genetic materials outside of bacterial chromosomes.[12] Prophages are genomes of bacteriophages (a type of virus) that are inserted into bacterial chromosomes; prophages can then be spread to other bacteria through the lytic cycle and lysogenic cycle of viral replication.[13]

While transposable elements are also found in prokaryotic genomes,[14] the most common mobile genetic elements in the prokaryotic genome are plasmids and prophages.[4]

Plasmids and prophages can move between genomesn through bacterial conjugation, allowing horizontal gene transfer.[15] Plasmids often carry genes that are responsible for bacterial antibiotic resistance; as these plasmids replicate and pass from one genome to another, the whole bacterial population can quickly adapt to the antibiotic.[16][17] Prophages can loop out of bacterial chromosomes to produce bacteriophages that go on to infect other bacteria with the prophages; this allows prophages to propagate quickly among the bacterial population, to the harm of the bacterial host.[13]

Mobilome in viruses

Discovered in 2008 in a strain of Acanthamoeba castellanii mimivirus,[18] virophages are an element of the virus mobilome.[5] Virophages are viruses that replicate only when host cells are co-infected with helper viruses.[19] Following co-infection, helper viruses exploit the host cell's transcription/translation machinery to produce their own machinery; virophages replicate through the machinery of either the host cell or the viruses.[19] The replication of virophages can negatively impact the replication of helper viruses.[18][20]

Sputnik[18][21] and mavirus[22] are examples of virophages.

References

  1. ^ Hurst GD, Werren JH (August 2001). "The role of selfish genetic elements in eukaryotic evolution". Nature Reviews. Genetics. 2 (8): 597–606. doi:10.1038/35084545. PMID 11483984.
  2. ^ Toussaint A, Merlin C (January 2002). "Mobile elements as a combination of functional modules". Plasmid. 47 (1): 26–35. doi:10.1006/plas.2001.1552. PMID 11798283.
  3. ^ Miller DW, Miller LK (October 1982). "A virus mutant with an insertion of a copia-like transposable element". Nature. 299 (5883): 562–4. Bibcode:1982Natur.299..562M. doi:10.1038/299562a0. PMID 6289125.
  4. ^ a b c Siefert JL (2009). "Defining the mobilome". In Gogarten MB, Gogarten JP, Olendzenski LC (eds.). Horizontal Gene Transfer: Genomes in Flux. Methods in Molecular Biology. Vol. 532. Humana Press. pp. 13–27. doi:10.1007/978-1-60327-853-9_2. ISBN 9781603278539. PMID 19271177. {{cite book}}: Unknown parameter |name-list-format= ignored (|name-list-style= suggested) (help)
  5. ^ a b Bekliz M, Colson P, La Scola B (November 2016). "The Expanding Family of Virophages". Viruses. 8 (11): 317. doi:10.3390/v8110317. PMC 5127031. PMID 27886075.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Wallau GL, Ortiz MF, Loreto EL (2012). "Horizontal transposon transfer in eukarya: detection, bias, and perspectives". Genome Biology and Evolution. 4 (8): 689–99. doi:10.1093/gbe/evs055. PMC 3516303. PMID 22798449.
  7. ^ Coe EH (November 2001). "The origins of maize genetics". Nature Reviews. Genetics. 2 (11): 898–905. doi:10.1038/35098524. PMID 11715045.
  8. ^ McClintock B (June 1950). "The origin and behavior of mutable loci in maize". Proceedings of the National Academy of Sciences of the United States of America. 36 (6): 344–55. Bibcode:1950PNAS...36..344M. doi:10.1073/pnas.36.6.344. PMC 1063197. PMID 15430309.
  9. ^ Mellor J, Malim MH, Gull K, Tuite MF, McCready S, Dibbayawan T, et al. (December 1985). "Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast". Nature. 318 (6046): 583–6. Bibcode:1985Natur.318..583M. doi:10.1038/318583a0. PMID 2415827.
  10. ^ Garfinkel DJ, Boeke JD, Fink GR (September 1985). "Ty element transposition: reverse transcriptase and virus-like particles". Cell. 42 (2): 507–17. doi:10.1016/0092-8674(85)90108-4. PMID 2411424.
  11. ^ Laski FA, Rio DC, Rubin GM (January 1986). "Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing". Cell. 44 (1): 7–19. doi:10.1016/0092-8674(86)90480-0. PMID 3000622.
  12. ^ Sonneborn TM (April 1950). "The cytoplasm in heredity". Heredity. 4 (1): 11–36. doi:10.1038/hdy.1950.2. PMID 15415003.
  13. ^ a b Bertani G (1953-01-01). "Lysogenic versus lytic cycle of phage multiplication". Cold Spring Harbor Symposia on Quantitative Biology. 18: 65–70. doi:10.1101/SQB.1953.018.01.014. PMID 13168970.
  14. ^ Campbell A, Berg DE, Botstein D, Lederberg EM, Novick RP, Starlinger P, Szybalski W (March 1979). "Nomenclature of transposable elements in prokaryotes". Gene. 5 (3): 197–206. doi:10.1016/0378-1119(79)90078-7. PMID 467979.
  15. ^ Juhas M (February 2015). "Horizontal gene transfer in human pathogens". Critical Reviews in Microbiology. 41 (1): 101–8. doi:10.3109/1040841X.2013.804031. PMID 23862575.
  16. ^ Harrison E, Brockhurst MA (June 2012). "Plasmid-mediated horizontal gene transfer is a coevolutionary process". Trends in Microbiology. 20 (6): 262–7. doi:10.1016/j.tim.2012.04.003. PMID 22564249.
  17. ^ Gillings MR (2013). "Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome". Frontiers in Microbiology. 4: 4. doi:10.3389/fmicb.2013.00004. PMC 3560386. PMID 23386843.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  18. ^ a b c La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, et al. (September 2008). "The virophage as a unique parasite of the giant mimivirus". Nature. 455 (7209): 100–4. Bibcode:2008Natur.455..100L. doi:10.1038/nature07218. PMID 18690211.
  19. ^ a b Claverie JM, Abergel C (2009). "Mimivirus and its virophage". Annual Review of Genetics. 43 (1): 49–66. doi:10.1146/annurev-genet-102108-134255. PMID 19653859.
  20. ^ Duponchel S, Fischer MG (March 2019). "Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses". PLoS Pathogens. 15 (3): e1007592. doi:10.1371/journal.ppat.1007592. PMC 6428243. PMID 30897185.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Sun S, La Scola B, Bowman VD, Ryan CM, Whitelegge JP, Raoult D, Rossmann MG (January 2010). "Structural studies of the Sputnik virophage". Journal of Virology. 84 (2): 894–7. doi:10.1128/JVI.01957-09. PMC 2798384. PMID 19889775.
  22. ^ Fischer MG, Hackl T (December 2016). "Host genome integration and giant virus-induced reactivation of the virophage mavirus". Nature. 540 (7632): 288–291. Bibcode:2016Natur.540..288F. doi:10.1038/nature20593. PMID 27929021.