Sulfur-reducing bacteria: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
D.Ascione (talk | contribs)
No edit summary
D.Ascione (talk | contribs)
No edit summary
Line 278: Line 278:
[[Geobacter]] species have a respiratory metabolism with Fe(III) serving as the common terminal electron acceptor in all species.
[[Geobacter]] species have a respiratory metabolism with Fe(III) serving as the common terminal electron acceptor in all species.
* ''[[Geobacter sulfurreducens]]'' was isolated from a drainage ditch in Norman, Okla. It is rod-shaped, gram-negative, non-motile and non-spore forming. The optimum temperature range is 30 to 35°. About the metabolism, is strict anaerobic chemoorganotroph which oxidizes acetate with Fe(III), S, Co(III), fumarate, or malate as the electron acceptor.Hydrogen is also used as an electron donor for Fe(III) reduction, whereas other carboxylic acids, sugars, alcohols, amino acids, yeast extract, phenol, and benzoate are not. C-type cytochromes was found in cells.<ref>{{Cite journal|last=Caccavo, F., Jr, Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F., & McInerney, M. J.|first=|date=|title=Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism.|url=https://doi.org/10.1128/AEM.60.10.3752-3759.1994|journal=Applied and environmental microbiology|volume=|pages=|via=}}</ref>
* ''[[Geobacter sulfurreducens]]'' was isolated from a drainage ditch in Norman, Okla. It is rod-shaped, gram-negative, non-motile and non-spore forming. The optimum temperature range is 30 to 35°. About the metabolism, is strict anaerobic chemoorganotroph which oxidizes acetate with Fe(III), S, Co(III), fumarate, or malate as the electron acceptor.Hydrogen is also used as an electron donor for Fe(III) reduction, whereas other carboxylic acids, sugars, alcohols, amino acids, yeast extract, phenol, and benzoate are not. C-type cytochromes was found in cells.<ref>{{Cite journal|last=Caccavo, F., Jr, Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F., & McInerney, M. J.|first=|date=|title=Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism.|url=https://doi.org/10.1128/AEM.60.10.3752-3759.1994|journal=Applied and environmental microbiology|volume=|pages=|via=}}</ref>
===== ''Pelobacter'' spp. =====

''[[Pelobacter]]'' is unique group of fermentative microorganisms belonging to the class of Deltaproteobacteria. They consume fermentatively alcohols such as 2,3-butanediol, acetoin and ethanol, but not sugars, with acetate plus ethanol and/or hydrogen as the end products.<ref name=":16">{{Cite journal|last=Aklujkar, M., Haveman, S.A., DiDonato, R.|first=|date=|title=The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features|url=https://doi.org/10.1186/1471-2164-13-690|journal=BMC Genomics|volume=|pages=|via=}}</ref>





Revision as of 09:25, 22 December 2020

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S).[1] These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen.[2] The final product or these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms.[3] Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H2 as electron donor. [4]

The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate.[5]

Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction.[6] Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds.In general, sulfate-reducing bacteria, are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult.[2] Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

These bacteria can be used in industrial processes to generate hydrogen sulfide for the precipitation of metals.

Taxonomy

Sulfur reducers are known to cover about 74 genera within the Bacteria domain. [2][7][8][9][10][1] Several types of sulfur-reducing bacteria have been discovered in different habitats like deep and shallow sea hydrothermal vents, freshwater, volcanic acidic hot springs and others.[11] According to NCBI classification, many sulfur reducers belong to the phylum of Proteobacteria, In particular the classes Deltaproteobacteria (Desulfuromonas, Pelobacter, Desulfurella, Geobacter), Gammaproteobacteria and Epsilonproteobacteria (now also known as the phylum Campylobacterota[12][13] according to GTDB classification). Other phyla that present sulfur-reducing bacteria are: Firmicutes (Desulfitobacterium, Ammonifex and Carboxydothermus), Aquificae (Desulfurobacterium and Aquifex), Synergistetes (Dethiosulfovibrio), Deferribacteres (Geovibrio), Thermodesulfobacteria, Spirochaetes, and Chrysiogenetes.[1][2]

Table 1. Genera of sulfur-reducing bacteria (NCBI classification).[1][2][8][9][10][14]
Phylum Class Genus (74) (and species)
AQUIFICAE Aquificae Aquifex (pyrophilus), Balnearium (lithotrophicum), Desulfurobacterium (crinifex, pacificum, thermolithotrophum),

Persephonella (guaimasensis, marina), Thermocrinis (ruber), Thermosulfidibacter (takaii),

Thermovibrio (ammonificans, guaymasensis, ruber)

BACTEROIDETES Bacteroidia Petrimonas (sulfuriphila)
CALDISERICA Caldiserica Caldisericum (exile)
CALDITRICHAEOTA Calditrichae Caldithrix (abyssi)
CHRYSIOGENETES Chrysiogenetes Desulfurispirillum (alkaliphilum)
COPROTHERMOBACTEROTA Coprothermobacteria Coprothermobacter (proteoliticus)
DEFERRIBACTERES Deferribacteres Deferribacter (desulfuricans), Geovibrio (thiophilus)
DEINOCOCCUS-THERMUS Deinococci Oceanithermus (desulfurans)
FIRMICUTES Clostridia Ammonifex (degensii), Carboxydothermus (pertinax), Clostridium (thiosulfatireducens, tunisiense, sulfidigenes), Dethiobacter (alkaliphilus),

Desulfitibacter (alkalitolerans), Desulfitispora (alkaliphila), Desulfitobacterium (hafniense, chlororespirans, dehalogenans, metallireducens),

Desulfosporosinus (acididurans, acidiphilus, orientis, meridiei, auripigmenti), Desulfotomaculum (thermosubterraneus, salinum,

geothermicum, reducens, intricatum), Ercella (succinogenes), Halanaerobium (congolense), Halarsenatibacter (silvermanii),

Sporanaerobacter (acetigenes),Thermoanaerobacter (sulfurophilus)

PROTEOBACTERIA Gammaproteobacteria Acidithiobacillus (ferrooxidans), Pseudomonas (mendocina), Shewanella (putrefaciens)
Deltaproteobacteria Desulfobacter (postgatei), Desulfobacterium, Desulfobotulus (alkaliphilus), Desulfobulbus (propionicus), Desulfomicrobium (baculatum),

Desulfomonile (tiedjei), Desulfonatronovibrio (thiodismutans), Desulfonatronum (thioautotrophicum), Desulfovermiculus (halophilus),

Desulfovibrio, Desulfurella, Desulfurivibrio (alkaliphilus), Desulfuromonas, Desulfuromusa, Geoalkalibacter (subterraneus), Geobacter,

Hippea (maritima), Pelobacter

Epsilonproteobacteria Caminibacter, Hydrogenimonas, Lebetimonas, Nautilia, Nitratiruptor, Sulfurimonas, Sulfurospirillum, Sulfurovum,

Thioreductor (incertae sedis), Wolinella (succinogenes)

SPIROCHAETES Spirochaetia Spirochaeta (perfilievii, smaragdinae)
SYNERGISTETES Synergistia Anaerobaculum (mobile, thermoterrenum), Dethiosulfovibrio (acidaminovorans, marinus, peptidovorans, russensis),

Thermanaerovibrio (acidaminovorans, velox), Thermovirga (lienii),

THERMOTOGAE Thermotogae Fervidobacterium (changbaicum, islandicum, nodosum, riparium, ), Geotoga (petraea, subterranea), Marinitoga (camini, hydrogenitolerans, okinawensis, piezophila),

Mesotoga (infera, prima), Petrotoga (mexicana, miotherma, mobilis), Thermosipho (aficanus), Thermotoga (lettingae, maritima, naphthophila, neapolitana),

THERMODESULFOBACTERIA Thermodesulfobacteria Caldimicrobium (exile), Thermodesulfobacterium (geofontis)
LUISA Table 2. Genera of sulfur-reducing bacteria (GTDB classification) [2][7][9][10][1]
Phylum Class Genus (74)
AQUIFICOTA Aquificae Aquifex, Persephonella, Thermocrinis
Desulfurobacteria Balnearium, Desulfurobacterium, Thermovibrio
BACTEROIDOTA Bacteroidia Petrimonas
CALDISERICOTA Caldisericia Caldisericum
CALDITRICHOTA Calditrichia Caldithrix
CAMPYLOBACTEROTA Campylobacteria Caminibacter, Hydrogenimonas, Lebetimonas,

Nautilia, Nitratiruptor, Sulfurimonas, Sulfurospirillum,

Sulfurovum,Wolinella

Desulfurellia Desulfurella, Hippea
CHRYSIOGENETOTA Chrysiogenetes Desulfurispirillum
COPROTHERMOBACTEROTA Coprothermobacteria Coprothermobacter
DEFERRIBACTEROTA Deferribacteres Deferribacter, Geovibrio
DEINOCOCCOTA Deinococci Oceanithermus
DESULFOBACTEROTA Desulfobacteria Desulfobacter, Desulfobacterium, Desulfobotulus
Desulfobulbia Desulfobulbus, Desulfurivibrio
Desulfovibrionia Desulfomicrobium, Desulfonatronovibrio, Desulfonatronum, Desulfovermiculus, Desulfovibrio,
Desulfuromonadia; Desulfuromonas, Desulfuromusa, Geoalkalibacter, Geobacter,

Pelobacter

Desulfomonilia Desulfomonile
Thermodesulfobacteria Caldimicrobium, Thermodesulfobacterium,
FIRMICUTES_A Clostridia Clostridium, Sporanaerobacter
Thermoanaerobacteria Thermoanaerobacter
FIRMICUTES_B Desulfitobacteria Desulfitobacterium, Desulfosporosinus
Desulfotomaculia Ammonifex, Carboxydothermus, Desulfotomaculum
Moorellia Desulfitibacter
FIRMICUTES_D Dethiobacteria Dethiobacter
FIRMICUTES_F Halanaerobia Halanaerobium, Halarsenatibacter
PROTEOBACTERIA Gammaproteobacteria Acidithiobacillus, Pseudomonas, Shewanella
SPIROCHAETOTA Spirochaetia Sediminispirochaeta
SYNERGISTOTA Synergistia Anaerobaculum, Dethiosulfovibrio, Thermanaerovibrio,
THERMOTOGOTA Thermotogae Fervidobacterium, Geotoga, Marinitoga, Mesotoga, Petrotoga, Thermosipho, Thermotoga
THERMOSULFIDIBACTEROTA Thermosulfidibacteria Thermosulfidibacter
Unclassified (from NCBI) Desulfitispora (alkaliphila), Ercella (succinogenes), Thermovirga, Thioreductor

Metabolism

Sulfur reduction metabolism is an ancient process, found in the deep branches of the phylogenetic tree.[15] Sulfur reduction uses elemental sulfur ( S0) and generates hydrogen sulfide (H2S) as the main end product. This metabolism is large present in extreme environments, from where microorganisms have been isolated, mostly in the recent years, bringing new important informations.[2]

Many sulfur-reducing bacteria are able to produce ATP through lithotrophic sulfur respiration, using zero-valence sulfur as electron acceptor, for instance the genera Wolinella, Ammonifex, Desulfuromonas and Desulfurobacterium. On the other side, there are obligate fermenters able to reduce elemental sulfur, for example Thermotoga, Thermosipho and Fervidobacterium. Among these fermenters there are species, such as Thermotoga maritina, that are not dependent on sulfur reduction, and utilize it as a supplementary electron sink.[10] Some researches[10][16][17] propose the hypothesis that polysulfide could be an intermediate of sulfur respiration, due to the conversion of elemental sulfur into polysulfide that occurs in sulfide solutions, performing this reaction:

[10]

Proteobacteria

The Proteobacteria (from Greek God "Proteus", capable of assuming different shapes) are a  major phylum of all gram-negative bacteria. There is a wide range of metabolisms. Most members are facultative or obligately anaerobic, chemoautotrophs and heterotrophics. Many are able to move using flagella, others are nonmotile.[18] They are currently divided into six classes, referred to by the Greek letters alpha through zeta, based on rRNA sequences: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Zetaproteobacteria.[8][19]

Class Gammaproteobacteria

The Gammaproteobacteria class include several medically, ecologically and scientifically important groups of bacteria. They are major organisms in diverse marine ecosystems and even extreme environments.This class contains a huge variety of taxonomic and metabolic diversity, including aerobic and anaerobic species, chemolitoauthotrophic, chemoorganotrophic and phototrophic species and also free living, biofilms formers, commensal and symbionts.[20]

Acidithiobacillus spp.

Acidithiobacillus are chemolithoautrophics, Gram-negative road-shaped bacteria, using energy from the oxidation of iron and sulfur containing minerals for growth. They are able to live at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments.[21] Acidithiobacillus ferrooxidans is abundant in natural environments associated with pyritic ore bodies, coal deposits, and their acidified drainages. It obtain energy by the oxidation of reduced sulfur compounds and it can also reduce ferric ion and elemental sulfur, thus promoting the recycling of iron and sulfur compounds under anaerobic conditions. It can also fix CO2 and nitrogen and be a primary producer of carbon and nidrogen in acidic environments.[22]

Shewanella spp.

Shewanella are Gram-negative, motile bacilli. The first description of the species was provided in 1931, Shewanella putrefaciens, a non-fermentative bacilli with a single polar flagellum which grow well on conventional solid media. This species is pathogenic for humans, even if infections are rare and reported especially in the geographic area characterized by warm climates.[23]

Pseudomonas spp.

Pseudomonas are Gram-negative chemoorganotrophic Gammaproteobacteria, straight or slightly curved rod-shaped. They are able to move thanks to one or several polar flagella; rarely nonmotile. Aerobic, having a strictly respiratory type of metabolism with oxygen as the terminal electron acceptor; in some cases, allowing growth anaerobically, nitrate can be used as an alternate electron acceptor. Almost all the species fail to grow under acid conditions (pH 4.5 or lower). Pseudomonas are widely distributed in nature. Some species are pathogenic for humans, animals, or plants.[24] Type species: Pseudomonas mendocina.

Class Deltaproteobacteria

The Deltaproteobacteria class comprises several morphologically different bacterial groups, Gram-negative, nonsporeforming that exhibit either anaerobic or aerobic growth. They are ubiquitous in marine sediments and contains most of the known sulfur reducing bacteria (e.g. Desulfuromonas spp.). The aerobic representatives are able to digest other bacteria and several of these members are important constituents of the microflora in soil and waters.[25]

Desulfuromusa spp.

Desulfuromusa genus includes bacteria obligately anaerobic that use sulfur as an electron acceptor and short-chain fatty acids, dicarboxylic acids, and amino acids, as electron donors that are oxidized completely to CO2.They are gram negative and complete oxidizer bacteria; their cells are motile and slightly curved or rod shaped. Three sulfur reducing species are known, Desulfromusa kysingii, Desulfuromusa bakii and Desulfuromusa succinoxidans .[26]

Desulfurella spp.

Desulfurella are short rod-shaped, gram-negative cells, motile thanks to a single polar flagellum or nonmotile, nonsporeforming. Obligately anaerobic, moderate thermophilic, they generally occur in warm sediments and in thermally heated cyanobacterial or bacterial communities that are rich in organic compounds and elemental sulfur. Type species: Desulfurella acetivorans.[27]

Hippea spp.

Hippea species are moderate thermophiles neutrophiles to moderate acidophiles, obligate anaerobes sulfur-reducing bacteria with gram-negative rod-shaped cells. They are able to grow lithotrophically with hydrogen and sulfur, and oxidize completely volatile fatty acids, fatty acids and alcohols. They inhabit submarine hot vents. The type species is Hippea maritima.[28]

Desulfuromonas spp.

Desulfuromonas species are gram-negative, mesophilic, obligately anaerobic and complete oxidizers [1] sulfur-reducing bacteria. They are able to grow on acetate as sole organic substrate and reduce elemental sulfur or polysulfide to sulfide.[29] Currently known species of the genus Desulfuromonas are Desulfuromonas acetoxidans, Desulfuromonas acetexigens, the marine organism Desulfuromonas palmitates and Desulfuromonas thiophila.

  • Desulfiromonas thiophila is an obligate anaerobic bacteria, that uses sulfur as only electron acceptor. Multiplies by binary fission and cells are motile thanks to polar flagella. They live in anoxic mud of freshwater sulfur springs, at a temperature from 26 to 30°C and pH 6.9 to 7.9.[30]
Geobacter spp.

Geobacter species have a respiratory metabolism with Fe(III) serving as the common terminal electron acceptor in all species.

  • Geobacter sulfurreducens was isolated from a drainage ditch in Norman, Okla. It is rod-shaped, gram-negative, non-motile and non-spore forming. The optimum temperature range is 30 to 35°. About the metabolism, is strict anaerobic chemoorganotroph which oxidizes acetate with Fe(III), S, Co(III), fumarate, or malate as the electron acceptor.Hydrogen is also used as an electron donor for Fe(III) reduction, whereas other carboxylic acids, sugars, alcohols, amino acids, yeast extract, phenol, and benzoate are not. C-type cytochromes was found in cells.[31]
Pelobacter spp.

Pelobacter is unique group of fermentative microorganisms belonging to the class of Deltaproteobacteria. They consume fermentatively alcohols such as 2,3-butanediol, acetoin and ethanol, but not sugars, with acetate plus ethanol and/or hydrogen as the end products.[32]


References

  • Brock, Thomas D.; Martinko, John M.; Parker, Jack (1994). Biology of Microorganisms. New Jersey: Prentice Hall. pp. 749–752. ISBN 1-4058-5345-X.
  1. ^ a b c d e f Madigan Michael T. Martinko John M. Bender (2014). Brock Biology of Microorganisms. Benjamin-Cummings Pub Co. pp. 448–449. ISBN 978-0321897398.
  2. ^ a b c d e f g Florentino, Anna P.; Weijma, Jan; Stams, Alfons J. M.; Sánchez-Andrea, Irene (2016), Rampelotto, Pabulo H (ed.), "Ecophysiology and Application of Acidophilic Sulfur-Reducing Microorganisms", Biotechnology of Extremophiles: Advances and Challenges, Grand Challenges in Biology and Biotechnology, Cham: Springer International Publishing, pp. 141–175, doi:10.1007/978-3-319-13521-2_5, ISBN 978-3-319-13521-2, retrieved 2020-11-30
  3. ^ Rabus, Ralf; Hansen, Theo A.; Widdel, Friedrich (2006), "Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes", The Prokaryotes, New York, NY: Springer New York, pp. 659–768, ISBN 978-0-387-25492-0, retrieved 2020-11-30
  4. ^ Parker, Charles Thomas; Taylor, Dorothea; Garrity, George M (2003-01-01). "Exemplar Abstract for Chlorobium vibrioforme Pelsh 1936 (Approved Lists 1980) and Prosthecochloris vibrioformis (Pelsh 1936) Imhoff 2003". The NamesforLife Abstracts. Retrieved 2020-11-30.
  5. ^ Pfennig, Norbert; Biebl, Hanno (1976-10-01). "Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium". Archives of Microbiology. 110 (1): 3–12. doi:10.1007/BF00416962. ISSN 1432-072X.
  6. ^ Stetter, K. O.; Zillig, W. (1985-01-01), Woese, Carl R.; Wolfe, Ralph S. (eds.), "CHAPTER 2 - Thermoplasma and the Thermophilic Sulfur-Dependent Archaebacteria", Archabacteria, Academic Press, pp. 85–170, doi:10.1016/b978-0-12-307208-5.50008-8, ISBN 978-0-12-307208-5, retrieved 2020-11-30
  7. ^ a b "GTDB - Tree". gtdb.ecogenomic.org. Retrieved 2020-12-11.
  8. ^ a b c "Home - Taxonomy - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2020-12-11.
  9. ^ a b c Cite error: The named reference :1 was invoked but never defined (see the help page).
  10. ^ a b c d e f Hedderich, Reiner; Klimmek, Oliver; Kröger, Achim; Dirmeier, Reinhard; Keller, Martin; Stetter, Karl O. (1998-12-01). "Anaerobic respiration with elemental sulfur and with disulfides". FEMS Microbiology Reviews. 22 (5): 353–381. doi:10.1111/j.1574-6976.1998.tb00376.x. ISSN 1574-6976.
  11. ^ Munn, C. B. (Colin B.) (2011). Marine microbiology : ecology and applications (2nd ed ed.). New York: Garland Science. ISBN 978-0-8153-6517-4. OCLC 671701780. {{cite book}}: |edition= has extra text (help)
  12. ^ Waite, David W.; Vanwonterghem, Inka; Rinke, Christian; Parks, Donovan H.; Zhang, Ying; Takai, Ken; Sievert, Stefan M.; Simon, Jörg; Campbell, Barbara J.; Hanson, Thomas E.; Woyke, Tanja (2017). "Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.)". Frontiers in Microbiology. 8. doi:10.3389/fmicb.2017.00682. ISSN 1664-302X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  13. ^ Waite, David W.; Vanwonterghem, Inka; Rinke, Christian; Parks, Donovan H.; Zhang, Ying; Takai, Ken; Sievert, Stefan M.; Simon, Jörg; Campbell, Barbara J.; Hanson, Thomas E.; Woyke, Tanja (2018). "Addendum: Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.)". Frontiers in Microbiology. 9. doi:10.3389/fmicb.2018.00772. ISSN 1664-302X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. ^ Janssen, Peter H.; Morgan, Hugh W. (1992-09-01). "Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1". FEMS Microbiology Letters. 96 (2–3): 213–217. doi:10.1111/j.1574-6968.1992.tb05419.x. ISSN 0378-1097.
  15. ^ Loka Bharathi, P.A. (2008), "Sulfur Cycle", Encyclopedia of Ecology, Elsevier, pp. 3424–3431, ISBN 978-0-08-045405-4, retrieved 2020-12-15
  16. ^ Schauder, Rolf; Müller, Eva (1993-11-01). "Polysulfide as a possible substrate for sulfur-reducing bacteria". Archives of Microbiology. 160 (5): 377–382. doi:10.1007/BF00252224. ISSN 1432-072X.
  17. ^ Zöphel, Andreas; Kennedy, M. Claire; Beinert, Helmut; Kroneck, Peter M. H. (1991). "Investigations on microbial sulfur respiration". European Journal of Biochemistry. 195 (3): 849–856. doi:10.1111/j.1432-1033.1991.tb15774.x. ISSN 1432-1033.
  18. ^ "Proteobacteria | Boundless Microbiology". courses.lumenlearning.com. Retrieved 2020-12-04.
  19. ^ Stackebrandt, E.; Murray, R. G. E.; Trüper, H. G. (1988). "Proteobacteria classis nov., a Name for the Phylogenetic Taxon That Includes the "Purple Bacteria and Their Relatives"". International Journal of Systematic and Evolutionary Microbiology,. 38 (3): 321–325. doi:10.1099/00207713-38-3-321. ISSN 1466-5026.{{cite journal}}: CS1 maint: extra punctuation (link)
  20. ^ Williams, Kelly P.; Gillespie, Joseph J.; Sobral, Bruno W. S.; Nordberg, Eric K.; Snyder, Eric E.; Shallom, Joshua M.; Dickerman, Allan W. (2010-05-01). "Phylogeny of Gammaproteobacteria". Journal of Bacteriology. 192 (9): 2305–2314. doi:10.1128/JB.01480-09. ISSN 0021-9193. PMID 20207755.
  21. ^ Zhan, Yue; Yang, Mengran; Zhang, Shuang; Zhao, Dan; Duan, Jiangong; Wang, Weidong; Yan, Lei (2019-03-27). "Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans". World Journal of Microbiology and Biotechnology. 35 (4): 60. doi:10.1007/s11274-019-2632-y. ISSN 1573-0972.
  22. ^ Valdés, Jorge; Pedroso, Inti; Quatrini, Raquel; Dodson, Robert J.; Tettelin, Herve; Blake, Robert; Eisen, Jonathan A.; Holmes, David S. (2008-12-11). "Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications". BMC Genomics. 9 (1): 597. doi:10.1186/1471-2164-9-597. ISSN 1471-2164. PMC 2621215. PMID 19077236.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  23. ^ "Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics". Clinical Microbiology and Infection. 11 (5): 347–352. 2005-05-01. doi:10.1111/j.1469-0691.2005.01108.x. ISSN 1198-743X.
  24. ^ Palleroni, Norberto J. (2015), "Pseudomonas", Bergey's Manual of Systematics of Archaea and Bacteria, American Cancer Society, pp. 1–1, doi:10.1002/9781118960608.gbm01210, ISBN 978-1-118-96060-8, retrieved 2020-12-04
  25. ^ Trujillo, Martha E; Dedysh, Svetlana; DeVos, Paul; Hedlund, Brian; Kämpfer, Peter; Rainey, Fred A; Whitman, William B, eds. (2015-04-17). Bergey's Manual of Systematics of Archaea and Bacteria. Wiley. ISBN 978-1-118-96060-8.
  26. ^ WERNER LIESACK and KAI FINSTER. "Phylogenetic Analysis of Five Strains of Gram-Negative, Obligately Anaerobic, Sulfur-Reducing Bacteria and Description of Desulfuromusa gen. nov., Including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov". INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY. 44.
  27. ^ Rainey, Fred A.; Hollen, Becky (2015), "Desulfurella", Bergey's Manual of Systematics of Archaea and Bacteria, American Cancer Society, pp. 1–4, doi:10.1002/9781118960608.gbm01037, ISBN 978-1-118-96060-8, retrieved 2020-12-10
  28. ^ Miroshnichenko, M. L.; Rainey, F. A.; Rhode, M.; Bonch-Osmolovskaya, E. A. (1999). "Hippea maritima gen. nov., sp. nov., a new genus of thermophilic, sulfur-reducing bacterium from submarine hot vents". International Journal of Systematic and Evolutionary Microbiology,. 49 (3): 1033–1038. doi:10.1099/00207713-49-3-1033. ISSN 1466-5026.{{cite journal}}: CS1 maint: extra punctuation (link)
  29. ^ Finster, Kai; Bak, Friedhelm; Pfennig, Norbert (1994-04-01). "Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments". Archives of Microbiology. 161 (4): 328–332. doi:10.1007/BF00303588. ISSN 1432-072X.
  30. ^ KAI FINSTER, JOHN D. COATES, WERNER LIESACK, AND NORBERT PFENNIG. "Desulfuromonas thiophila sp. nov., a New Obligately Sulfur-Reducing Bacterium from Anoxic Freshwater Sediment". International journal of systematic bacteriology – via Pubmed.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Caccavo, F., Jr, Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F., & McInerney, M. J. "Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism". Applied and environmental microbiology.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Aklujkar, M., Haveman, S.A., DiDonato, R. "The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features". BMC Genomics.{{cite journal}}: CS1 maint: multiple names: authors list (link)