Jump to content

Alstom APS

From Wikipedia, the free encyclopedia
(Redirected from Alimentation par Sol)
Bordeaux tram using APS on route B near the Roustaing tramstop
A section of APS track showing the neutral sections at the end of the powered segments plus one of the insulating joint boxes which mechanically and electrically join the APS rail segments

Alstom APS, also known as Alimentation par Sol or Alimentation Par le Sol (which literally means "feeding via the ground"), is a form of ground-level power supply for street trams and, potentially, other vehicles. APS was developed by Innorail, a subsidiary of Spie Enertrans, but was sold to Alstom when Spie was acquired by Amec. It was originally created for the Bordeaux tramway, which began construction in 2000 and opened in 2003.[1] From 2011, the technology has been used in a number of other cities around the world.

APS is used, primarily for aesthetic reasons, as an alternative to overhead lines. As such, it competes with other ground-level power supply systems but also with energy storage systems such as batteries. In 2015, Alstom developed a derivative of APS, Alstom SRS (Système de Recharge statique par le sol or static-based ground charging system), which can be used to recharge battery powered trams and buses while they are stationary at stops.[2]

Alstom further developed the APS system for use with buses and other vehicles. The system has been tested for safety when the road is cleared by snowplows, under exposure to snow, ice, salting, and saturated brine,[3] and for skid and road adherence safety for vehicles, including motorcycles.[4] Alstom will trial its electric road system (ERS) on the public road RN205[5] in the Rhône-Alpes region between 2024 and 2027.[6] The system is expected to supply 500kW of power for electric heavy trucks, as well as power for road utility vehicles and electric cars.[4]

Technology

[edit]

APS uses a third rail placed between the running rails that is divided electrically into 11 m segments that automatically switch on and off according to whether a tram is passing over them, thereby eliminating risk to other road users.[7] Each tram has two power collection shoes, next to which are antennas that send radio signals to energise the power rail segments as the tram passes over them. At any time, two consecutive segments under the tram will be live.[citation needed]

APS is different from the conduit current collection system, which was one of the first ways of supplying power to a tram system, as the latter involves burying a third and fourth rail in an underground conduit or trench between the running rails. Conduit current collection was used in historic tram systems in Washington, Manhattan, Paris, Berlin, Marseilles, Vienna, Budapest and London. It fell into disuse because overhead wires proved much less expensive and troublesome for street railways.[8]

Safety

[edit]

Unlike the track-side third rail that is used by most metro trains and some main-line railways, APS poses no danger to people or animals and so can be used in pedestrian areas and city streets.[7] The French government reports no electrocutions or electrification accidents on any tramway in France from as early as 2003[9] until as recently as December 31, 2020.[9][10]

Uses

[edit]

Bordeaux

[edit]
Track with APS under construction in Place Paul Doumer, Bordeaux

Conduit current collection systems were used in the late 1800s and early 1900s in several major cities, among them Bordeaux,[11]: 44  but they posed maintenance issues and road safety issues. The Bordeaux conduit systems remained among the last in operation until being decommissioned in 1958. For decades, conduit systems were not reintroduced because they didn't meet modern safety standards. The first ground-level power supply system developed to modern safety standards was the Ansaldo Stream, although Alstom APS was the first to be commercially implemented in 2003.[12] This success led to a proliferation of commercial implementations of ground-level power supply systems.[13]

Construction of the new, catenary-free tramway started in February 2000. In May 2000 a contract was signed with Alstom for the supply of the tram fleet, and in October the first track was laid. Construction and testing continued through 2001 to 2003, and the first section of the tramway opened on 21 December 2003 in the presence of President Jacques Chirac, and the mayor of Bordeaux, Alain Juppé. The newly open section, known as line A, ran from Lormont-Lauriers and La Morlette, to Mériadeck.[14]

Other cities

[edit]
Alstom APS tracks on the CBD and South East Light Rail in Sydney
System City Country Opened Comments
Angers tramway Angers France 2011 [15][16]
Reims tramway Reims France 2011 [15]
Orléans tramway Orléans France 2012 [17]
Tours tramway Tours France 2013 [18]
Dubai Tram Dubai United Arab Emirates 2014 The system is fully equipped with APS over its entire passenger route length and thus trams do not use their pantographs unless they are travelling within the depot area.[19]
VLT Carioca Rio de Janeiro Brazil 2016 The system mainly uses APS, but where that was deemed impractical, the trams employ Alstom's proprietary supercapacitor-based energy storage system.[20]
CBD and South East Light Rail Sydney Australia 2019 The system uses APS within the Sydney CBD and conventional overhead wires elsewhere.[21]
Cuenca tram Cuenca Ecuador 2020 The system uses APS in certain regions only and conventional overhead wires elsewhere.[22]
Istanbul T5 tramway Istanbul Turkey 2021 [23]
Lusail Tram Lusail Qatar 2022 The system uses APS on the above ground sections, with around 19 km of APS.[24]
Barcelona tram Barcelona Spain 2024 The system uses APS in certain regions only and conventional overhead wires elsewhere.

Standardization

[edit]

Alstom, Elonroad, and other companies in 2020 began drafting a standard for ground-level power supply electric roads.[25][26] A working group of the French Ministry of Ecology considers rail ground-level power supply technology to be the most likely candidate for electric roads.[27] The first standard for electrical equipment on board a vehicle powered by a rail electric road system (ERS), CENELEC Technical Standard 50717, has been approved in late 2022.[28] The following standards, encompassing "full interoperability" and a "unified and interoperable solution" for ground-level power supply, are scheduled to be published by the end 2024, detailing complete "specifications for communication and power supply through conductive rails embedded in the road".[29][30]

References

[edit]
  1. ^ "Third-rail trams across the Garonne". Railway Gazette International. 2004-02-01. Archived from the original on 2010-04-26. Retrieved 2008-05-02.
  2. ^ "Alstom transfers tram power supply technology to buses". Rail Insider. September 26, 2019. Archived from the original on 29 November 2020. Retrieved November 29, 2020.
  3. ^ Patrick Duprat (February 11, 2022), Compatibility of an in-road Electric Road System with winter service operations (PDF), Alstom, PIARC
  4. ^ a b Patrick Duprat (January 16, 2024), "Présentation du projet eRoadMontBlanc" (PDF), Cercle des Transports
  5. ^ "Les aides proposées par ATMB à ses clients légers et lourds pour la décarbonation des transports", ATMB, June 30, 2023
  6. ^ Jean-Philippe Pastre (June 30, 2023), "L'APS d'Alstom bientôt testé sur les routes", TRM24
  7. ^ a b "APS: Service-proven catenary-free tramway operations". Alstom. Archived from the original on November 29, 2020. Retrieved November 29, 2020.
  8. ^ Post, Robert C. (2007). Urban Mass Transit: The Life Story of a Technology. Greenwood Press. pp. 45–47. ISBN 978-0-313-33916-5.
  9. ^ a b Service Technique des Remontées Mécaniques et des Transports Guidés - Division TramWays (November 2011), ACCIDENTOLOGIE DES TRAMWAYS - Analyse des évènements déclarés année 2010 - évolution 2003-2010 (PDF)
  10. ^ Service Technique des Remontées Mécaniques et des Transports Guidés - Division TramWays (October 19, 2021), Accidentologie « tramways » – Données 2020 (PDF)
  11. ^ Gerry Colley (November 27, 2014), Electrifying the streets: the surface-contact controversy in give English towns 1880-1920 (PDF), doi:10.21954/ou.ro.0000d65c
  12. ^ J Baggs (March 9, 2006), "5.1 Ground Level Power Supply", Wire-Free Traction System Technology Review (PDF), Edinburgh Tram Network
  13. ^ John D. Swanson (April 7, 2019), "Continued Advances in Light Rail / Streetcar Vehicle Off-Wire Technology" (PDF), Transportation Research Board
  14. ^ "Phase 1: 2000 - 2004" (in French). Bordeaux Métropole. Archived from the original on 2020-12-06. Retrieved 2020-12-06.
  15. ^ a b "Reims and Angers choose APS". Railway Gazette International. 1 August 2006.[permanent dead link]
  16. ^ "Angers tram opens". Railway Gazette International. 29 June 2011. Archived from the original on 13 October 2011. Retrieved 29 November 2020.
  17. ^ Guerrieri, Marco (23 November 2019). "Catenary-Free Tramway Systems: Functional and Cost–Benefit Analysis for a Metropolitan Area". Urban Rail Transit. 5 (4). Springer Nature Switzerland AG.: 289–309. doi:10.1007/s40864-019-00118-y. hdl:11572/246245. S2CID 208953068.
  18. ^ "Tours selects Citadis and APS". Railway Gazette International. 2010-09-14. Archived from the original on 2012-09-25. Retrieved 2020-11-29.
  19. ^ "Al Safouh tram project consortium selected". Railway Gazette International. 2008-04-29. Retrieved 2008-05-02.
  20. ^ Wright, Sarah. "Alstom opens Rio's tramway ready for the 2016 Olympic Games". Retrieved 2017-11-04.
  21. ^ "CBD and South East Light Rail improvements to deliver a better service for customers | Transport for NSW". Archived from the original on 2014-12-14. Retrieved December 2, 2014.
  22. ^ UK, DVV Media. "First Cuenca tram on its way". Railway Gazette. Archived from the original on 2017-11-07. Retrieved 2017-11-04.
  23. ^ "Istanbul opens first section of Golden Horn tramway". Railway Gazette International. Retrieved August 9, 2021.
  24. ^ "Lusail Tramway enters commercial service". Alstom. January 10, 2022. Retrieved 2022-12-03. 19 km of APS in at grade sections (ground power supply)
  25. ^ PIARC (February 17, 2021), Electric Road Systems - PIARC Online Discussion, 34 minutes 34 seconds (standardization), 2 hours 36 minutes 51 seconds (standardization), archived from the original on 2021-12-22
  26. ^ Martin G. H. Gustavsson, ed. (March 26, 2021), "Key Messages on Electric Roads - Executive Summary from the CollERS Project" (PDF), CollERS, p. 6, retrieved February 11, 2022
  27. ^ Laurent Miguet (April 28, 2022), "Sur les routes de la mobilité électrique", Le Moniteur
  28. ^ "PD CLC/TS 50717 Technical Requirements for Current Collectors for ground-level feeding system on road vehicles in operation", The British Standards Institution, 2022, archived from the original on January 2, 2023, retrieved January 2, 2023
  29. ^ Final draft: Standardization request to CEN-CENELEC on 'Alternative fuels infrastructure' (AFI II) (PDF), European Commission, February 2, 2022, archived from the original (PDF) on April 8, 2022, retrieved January 2, 2023
  30. ^ Matts Andersson (July 4, 2022), Regulating Electric Road Systems in Europe - How can a deployment of ERS be facilitated? (PDF), CollERS2 - Swedish German research collaboration on Electric Road Systems