Jump to content

Berge knot

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by The Anome (talk | contribs) at 09:59, 24 July 2022 (Adding local short description: "Class of mathematical knot with special properties", overriding Wikidata description "knot lying on a genus-2 Heegaard surface such that, for every handlebody bounded by the Heegard surface, the knot meets a meridian disk exactly once; conjectured to be those knots that admit lens-space surgeries"). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In the mathematical theory of knots, a Berge knot (named after mathematician John Berge) or doubly primitive knot is any member of a particular family of knots in the 3-sphere. A Berge knot K is defined by the conditions:

  1. K lies on a genus two Heegaard surface S
  2. in each handlebody bound by S, K meets some meridian disc exactly once.

John Berge constructed these knots as a way of creating knots with lens space surgeries and classified all the Berge knots. Cameron Gordon conjectured these were the only knots admitting lens space surgeries. This is now known as the Berge conjecture.

Berge conjecture

[edit]

The Berge conjecture states that the only knots in the 3-sphere which admit lens space surgeries are Berge knots. The conjecture (and family of Berge knots) is named after John Berge.

Progress on the conjecture has been slow. Recently Yi Ni proved that if a knot admits a lens space surgery, then it is fibered. Subsequently, Joshua Greene showed that the lens spaces which are realized by surgery on a knot in the 3-sphere are precisely the lens spaces arising from surgery along the Berge knots.

Further reading

[edit]

Knots

[edit]
  • Baker, Kenneth L. (2008), "Surgery descriptions and volumes of Berge knots. I. Large volume Berge knots", Journal of Knot Theory and its Ramifications, 17 (9): 1077–1097, arXiv:math/0509054, doi:10.1142/S0218216508006518, MR 2457837.
  • Baker, Kenneth L. (2008), "Surgery descriptions and volumes of Berge knots. II. Descriptions on the minimally twisted five chain link", Journal of Knot Theory and its Ramifications, 17 (9): 1099–1120, arXiv:math/0509055, doi:10.1142/S021821650800652X, MR 2457838.
  • Yamada, Yuichi (2005), "Berge's knots in the fiber surfaces of genus one, lens space and framed links", Journal of Knot Theory and its Ramifications, 14 (2): 177–188, doi:10.1142/S0218216505003774, MR 2128509.

Conjecture

[edit]
[edit]

Two blog posts in the weblog "Low Dimensional Topology - Recent Progress and Open Problems" related to the Berge conjecture:

The Berge conjecture, by Jesse Johnson
Knot complements covering knot complements by Ken Baker