Internal dosimetry

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Internal dosimetry is the science and art of internal ionising radiation dose assessment due to radionuclides incorporated inside the human body.[1]

Radionuclides deposited within a body will irradiate tissues and organs and give rise to committed dose until they are excreted from the body or the radionuclide is completely decayed.

The internal doses for workers or members of the public exposed to the intake of radioactive particulates can be estimated using bioassay data such as lung and body counter measurements, urine or faecal radioisotope concentration, etc. The International Commission on Radiological Protection (ICRP) biokinetic models are applied to establish a relationship between the individual intake and the bioassay measurements, and then to infer the internal dose.

Committed dose[edit]

Main article: committed dose

The internal radiation dose due to indested or inhaled radioactive substances is known as committed dose.

The ICRP defines Committed effective dose, E(t) as the sum of the products of the committed organ or tissue equivalent doses and the appropriate tissue weighting factors WT, where t is the integration time in years following the intake. The commitment period is taken to be 50 years for adults, and to age 70 years for children. [2]

The ICRP further states "For internal exposure, committed effective doses are generally determined from an assessment of the intakes of radionuclides from bioassay measurements or other quantities (e.g., activity retained in the body or in daily excreta). The radiation dose is determined from the intake using recommended dose coefficients".[3]

Routes of intake[edit]

There are a few routes of intake (of radionuclide) namely,

  • Inhalation
  • Ingestion
  • Injection
  • Absorption

In an radioactive area, radionuclide particulate may be suspended in the air and can enter the body by inhalation. These particulates may be deposited in different parts of the respiratory tract depending upon their aerodynamic diameter.[4]

Monitoring techniques[edit]

In-vivo monitoring
Internal dose monitoring of the radionuclides which emit radiation which can penetrate out of the body.For example X-rays, gamma rays of sufficient energy. It can be measured by deveces such as a Whole Body Counter.

A Whole Body Counter[5] has a low background arrangement with counting systems

  • NaI(Tl) detectors for high energy photon detection
  • Phoswich detectors with Be window and thin NaI(Tl)crystal and thick CsI(Tl)or CsI(Na), for low energy (<100 keV) photon detection

HPGe detectors are replacing detectors for measuring the low energy and high energy photons with appropriate electronic systems.
Calibration of these systems is carried out with different type of physical and mathematical phantoms. Physical phantoms include BOMAB, LLNL, JAERI, thyroid and the knee phantoms. Some of the renowned mathematical phantoms are MIRD, CRISTY and nowadays voxel phantoms also known as Computational human phantoms.

In-vitro monitoring

Monitoring of the radionuclides present in the body using the bio-assay sample taken out of the body.For example urine sample,sweat, fecal sample etc.

Biokinetic modeling[edit]

The ICRP models are used to simulate the distribution of the isotopes inside the human being. All current ICRP models, compiled in the ICRP Database of Dose Coefficients (ICRP 2001),[6] can be represented by compartmental systems with constant coefficients. The conceptual model used by ICRP can be summarized as it follows.

The human body can be divided into three systems:

a) The human respiratory tract model (HRTM). This model is applied for modeling the intake of radioactive aerosols by inhalation. The detailed description is given in ICRP 66 (1994). If a person inhales instantaneously a quantity I, it is deposited directly in some compartments of the HRTM. The fraction deposited in each compartment is called Initial Deposition Fraction or IDF. It is a function of Activity Median Aerodynamic Diameter (AMAD), which includes size, shape, density, anatomical and physiological parameters as well as various conditions of exposure. The IDF values may be calculated either following the procedure described in ICRP 66 (1994) or obtaining it from the Annex F of ICRP 66 (1994). The general model of the HRTM is common to any element except the absorption rates {spt, sp, st} which are related to the chemical form of the element. ICRP gives default values of absorption rates according to types F, M or S.

b) The gastrointestinal tract (GI). This is applied for modeling the intake of particles in the GI tract following the model provided in ICRP 30 (ICRP 1979) and ICRP 105(ICRP 2005). Particles can be introduced in the GI Tract directly by ingestion, or from the RT. Deposition is in the stomach (ST). Part or all the flow is transferred, through SI, to the blood (B). The rate transfer from SI to B, is given by λB = f1 λSI/(1 – f1), where f1 is the fraction of the stable element reaching the blood (or body fluids). If f1 = 1 all flows from the stomach it goes to B. The value of f1 is associated to the element and their chemical form The GI tract model will be replaced by the called Human Alimentary Tract Model (HATM), but it is not published yet.

c) Systemic compartments. They are specific to an element or groups of elements (ICRP 2001). ICRP 78 (1997) establishes three generic groups: (i) hydrogen, cobalt, ruthenium, caesium, and californium, (ii) strontium, radium, and uranium and, (iii) thorium, neptunium, plutonium, americium, and curium. For other elements not included in ICRP78, the ICRP 30 model is applicable and they have the same generalized compartmental model as group (i). For the elements of each group the same model is applied although some parameters are specific to the element. From a mathematical point of view we can establish two groups: a) Elements whose biokinetic model does not involve recycling, this includes the group (i) and the elements where ICRP 30 is still applicable, and b) elements whose biokinetic models involve recycling, this includes group (ii) and (iii). A few computer codes have been developed to estimate intake and calculate internal dose using biassay data.[7]

Bioassay evaluations[edit]

Biokinetic modeling is widely used in internal dosimetry and to evaluate bioassay data. Computer programs can be used for bioassay evaluations.[8] The bioassay measurement values can be used to estimate unknown intake.[9]

See also[edit]

  • committed dose
  • Sievert - the measure of health effect due to low radiation doses. Also contains a description of the various dose quantities.

References[edit]

  1. ^ [1] IRPA paper 54302 - Internal Dosimetry: The science and art of internal dose assessment
  2. ^ ICRP publication 103 - Glossary.
  3. ^ ICRP publication 103 - Paragraph 144.
  4. ^ Aerodynamic diameter
  5. ^ Whole Body Monitoring
  6. ^ International Commission on Radiological Protection. ICRP Database of Dose Coefficients: Workers and Members of the Public. Oxford: Pergamon Press; (ICRP); 2001.
  7. ^ G. Sanchez Health Phys. 92(1):64–72(2007)
  8. ^ Bioassay evaluations with Biokmod
  9. ^ Optimal design and mathematical model applied to establish bioassay programs

External links[edit]