Isogeometric analysis

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Isogeometric analysis is a recently developed computational approach that offers the possibility of integrating finite element analysis (FEA) into conventional NURBS-based CAD design tools. Currently, it is necessary to convert data between CAD and FEA packages to analyse new designs during development, a difficult task since the computational geometric approach for each is different. Isogeometric analysis employs complex NURBS geometry (the basis of most CAD packages) in the FEA application directly. This allows models to be designed, tested and adjusted in one go, using a common data set.[1]

The pioneers of this technique are Tom Hughes and his group at the University of Texas at Austin. A reference free software implementation of some isogeometric analysis methods is GeoPDEs.[2][3] Likewise, other implementations can be found online. For instance, PetIGA[4] is an open framework for high performance isogeometric analysis heavily based on PETSc. In addition, MIGFEM is another IGA code which is implemented in Matlab and supports Partition of Unity enrichment IGA for 2D and 3D fracture.

References[edit]

  1. ^ Cottrell, J. Austin; Thomas J.R. Hughes, Yuri Bazilevs (October 2009). Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons. ISBN 978-0-470-74873-2. Retrieved 2009-09-22. 
  2. ^ "GeoPDEs: a free software tool for isogeometric analysis of PDEs". 2010. Retrieved November 7, 2010. 
  3. ^ de Falco, C.; A. Reali; R. Vázquez (2011). "GeoPDEs: a research tool for Isogeometric Analysis of PDEs". Adv. Eng. Softw. 42: 1020–1034. 
  4. ^ "PetIGA: A framework for high performance Isogeometric Analysis". 2012. Retrieved August 7, 2012. 

External links[edit]