Jump to content

MilkyWay@home

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Al Piskun (talk | contribs) at 21:50, 9 October 2022 (reword). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

MilkyWay@home
a dwarf galaxy being disrupted by the Milky Way's gravity (the Milky Way is not shown, and would be at the center of the picture)
Developer(s)Rensselaer Polytechnic Institute
Development statusActive
Operating systemCross-platform
PlatformBOINC
Typeastroinformatics
LicenseGNU GPL v3[1]
Average performance1,597,056 GFLOPS (May 2020)[2]
Active users15,322
Total users234,297
Active hosts26,711
Total hosts34,424
Websitemilkyway.cs.rpi.edu/milkyway/

MilkyWay@home is a volunteer computing project in the astrophysics category, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. Using spare computing power from over 38,000 computers run by over 27,000 active volunteers as of November 2011,[3] the MilkyWay@home project aims to generate accurate three-dimensional dynamic models of stellar streams in the immediate vicinity of the Milky Way. With SETI@home and Einstein@home, it is the third computing project of this type that has the investigation of phenomena in interstellar space as its primary purpose. Its secondary objective is to develop and optimize algorithms for volunteer computing.

Purpose and design

MilkyWay@home is a collaboration between the Rensselaer Polytechnic Institute's departments of Computer Science and Physics, Applied Physics and Astronomy and is supported by the U.S. National Science Foundation. It is operated by a team that includes astrophysicist Heidi Jo Newberg and computer scientists Malik Magdon-Ismail, Bolesław Szymański and Carlos A. Varela.

By mid-2009 the project's main astrophysical interest is in the Sagittarius Stream,[4] an immense stellar stream emanating from the Sagittarius Dwarf Spheroidal Galaxy that wraps around the Milky Way. Mapping such interstellar streams and their dynamics with high accuracy may provide crucial clues for understanding the structure, formation, evolution, and gravitational potential distribution of the Milky Way and similar galaxies. It could also provide insight on the dark matter issue. As the project evolves, it might turn its attention to other star streams.

Using data from the Sloan Digital Sky Survey, MilkyWay@home divides starfields into wedges of about 2.5 deg. width and applies self-optimizing probabilistic separation techniques (i.e., evolutionary algorithms) to extract the optimized tidal streams. The program then attempts to create a new, uniformly dense wedge of stars from the input wedge by removing streams of data. Each stream removed is characterized by six parameters: percent of stars in the stream; the angular position in the stripe; the three spatial components (two angles, plus the radial distance from Earth) defining the removed cylinder; and a measure of width. For each search, the server application keeps track of a population of individual stars, each of which is attached to a possible model of the Milky Way.

Project details and statistics

MilkyWay@home has been active since 2007, and optimized client applications for 32-bit and 64-bit operating systems became available in 2008. Its screensaver capability is limited to a revolving display of users' BOINC statistics, with no graphical component. Instead, animations of the best computer simulations are shared through YouTube.[5]

The work units that are sent out to clients used to require only 2–4 hours of computation on modern CPUs, however, they were scheduled for completion with a short deadline (typically, three days). By early 2010, the project routinely sent much larger units that take 15–20 hours of computation time on the average processor core, and are valid for about a week from a download. This made the project less suitable for computers that are not in operation for periods of several days, or for user accounts that do not allow BOINC to compute in the background. As of 2018, many GPU-based tasks only require less than a minute to complete on a high-end graphics card.

The project's data throughput progress has been very dynamic recently. In mid-June 2009, the project had about 24,000 registered users and about 1,100 participating teams in 149 countries and was operating at 31.7 TeraFLOPS. As of 12 January 2010, these figures were at 44,900 users and 1,590 teams in 170 countries, but average computing power had jumped to 1,382 TFlops,[6] which would rank MilkyWay@home second among the TOP500 list of supercomputers. MilkyWay@home is currently[as of?] the 2nd largest volunteer computing project behind Folding@Home which crossed 5,000 TFlops in 2009.

That data throughput massively outpaced new user acquisition is mostly due to the deployment of client software that uses commonly available medium and high performance graphics processing units (GPUs) for numerical operations in Windows and Linux environments. MilkyWay@home CUDA code for a broad range of Nvidia GPUs was first released on the project's code release directory on June 11, 2009 following experimental releases in the MilkyWay@home (GPU) fork of the project. An OpenCL application for AMD Radeon GPUs is also available.

MilkyWay@home is a whitelisted gridcoin project.[7] It is the second-largest manufacturer of gridcoins.

Scientific results

Large parts of the MilkyWay@home project are created for Nathan Cole's thesis and there are also several other theses and scientific publications inspired by the resulting calculations of this projects applications.

  1. Eric J. Mendelsohn, Heidi Jo Newberg, Siddhartha Shelto et al. Estimate of the Mass and Radial Profile of the Orphan–Chenab Stream's Dwarf-galaxy Progenitor Using MilkyWay@home. The Astrophysical Journal, Volume 926, Number 2 https://doi.org/10.3847/1538-4357/ac498a (February 17 2022).[8]
  2. Donlon T., Newberg H.J. et al. A Trifurcated Sagittarius Stream in the South. Bulletin of the Americ Astr Society 53-5. (June 2021).[9]
  3. Mendelsohn E.J., Newberg H.J. et al. Estimate of the Mass and Radial Profile of the Orphan Stream's Dwarf Galaxy Progenitor Using MilkyWay@home. Bulletin of the Americ Astr Society 53-5 (2021).[10]
  4. Mendelsohn E.J., Newberg H.J. et al. N-Body Simulations with MilkyWay@home. Bulletin of the Americ Astr Society 52-4, (2020).[11]
  5. Newberg H.J., Sanderson R. et al. The Milky Way’s Shell Structure Reveals the Time of a Radial Collision. The Astrophys J 902-2, (2020).[12]
  6. Shelton S., Newberg H.J. et al. An Algorithm for Reconstructing the Orphan Stream Progenitor with MilkyWay@home Volunteer Computing. (Apr 2019).[13]
  7. Newberg H.J., Siddhartha S. et al. Streams and the Milky Way Dark Matter Halo. Symposium S353 (14), 2019.[14]
  8. Shelton S., Weiss J. et al. Reconstructing the Orphan Stream Progenitor with MilkyWay@home Volunteer Computing. Americ Astron Societ Meeting 233. (2019).[15]
  9. Weiss J., Newberg H.J. et al. A tangle of stellar streams in the North Galactic cap using MilkyWay@home. The Astron Jour Letters 867-1 (2018).[16]
  10. Siddhartha S. Constraining dwarf galaxy properties using Tidal Streams. Phd Thesis (2018).[17]
  11. Weiss J. The stellar density of the major substructure in the Milky Way halo. Phd Thesis. (2018).[18]
  12. Weiss J., Newberg H.J. et al. Fitting the density substructure of the stellar halo with MilkyWay@home. The Astrophys J. 238-2 (2018).[19]
  13. Newberg H.J., Shelton S. et al. Characterizing Milky Way Tidal Streams and Dark Matter with MilkyWay@home. Americ Astron Societ Meeting 231, (2018).[20]
  14. Newberg H.J., Shelton S. Reconstructing the Dwarf Galaxy Progenitor from Tidal Streams Using MilkyWay@home. DDA Meeting 49, (2018).[21]
  15. Dumas J., Newberg H.J.,Niedzielski B. et al. Testing the Dark Matter Caustic Theory Against Observations in the Milky Way. The Astrophys J 881-1, (2016).[22]
  16. Weiss J., Newberg H.J., Arsenault M. et al. Using A New Model for Main Sequence Turnoff Absolute Magnitudes to Measure Stellar Streams in the Milky Way Halo. Americ Astron Societ Meeting 227, (2016).[23]
  17. Shelton S., Newberg H.J., Arsenault M. et al. Measuring Dark Matter With MilkyWay@home. Americ Astron Societ Meeting 227, (2016).[24]
  18. Newberg H.J., Xu Y. et al. Rings and Radial Waves in the Disk of the Milky Way. The American Astronomical Society Conference, (2015).[25]
  19. Scibelli S., Newberg H.J., Carlin J.L. Census of blue stars in SDSS DR8. The Astrophysical Journal Supplement Series 215-2, (2014).[26]
  20. Newberg H.J. Determining distances to stars statistically from photometry. Proceedings of the International Astronomical Union, 8(S289), 74-81. (2014).[27]
  21. Xu Y, Newberg H.J. Exploration of Galactic Structures Beyond the Sun Toward the Anti-Center of the Milky Way. Proceedings of the International Astronomical Union, 9(S298), 450-450. (2014).[28]
  22. Newberg H.J., Newby M, Desell T et al. MilkyWay@home: Harnessing Volunteer Computers to Constrain Dark Matter in the Milky Way. Proceedings Intern Astr Union 298, (2014).[29]
  23. Newby M. The Sagittarius Tidal Stream and the Shape Of The Galactic Stellar Halo. PhD Thesis, Rensselaer Polytechnic Institute. (2013).[30]
  24. Newby M., Cole N., Newberg H.J., Desell T. et al. A Spatial Characterization of the Sagittarius Dwarf Galaxy Tidal Tails. The Astrophysical Journal 145-163, (2013).[31]
  25. Guevara S., Gustavo A., Desell, Travis, LaPorte, Jason, & Varela, Carlos A.. Modular Visualization of Distributed Systems. CLEI Electronic Journal, 14(1), 7. Recuperado en 08 de octubre de 2022, de (2011).[32]
  26. Dessel T., Newberg H.J., Magdon-Ismail M. et al. A Robust Asynchronous Newton Method for Massive Scale Computing Systems. Internat Conf on Comput Intellig and Softw Eng, (2011).[33]
  27. T. Desell et al., Evolving N-Body Simulations to Determine the Origin and Structure of the Milky Way Galaxy's Halo Using Volunteer Computing. 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 1888-1895. (2011).[34]
  28. Travis Desell, David P. Anderson, Malik Magdon-Ismail, Heidi Newberg, Boleslaw Szymanski and Carlos A. Varela. An Analysis of Massively Distributed Evolutionary Algorithms. IEEE Congress on Evolutionary Computation, 2010, pp. 1-8. (July 2010).[35]
  29. Travis Desell, Malik Magdon-Ismail, Boleslaw Szymanski, Carlos A. Varela, Heidi Newberg and David P. Anderson. Validating Evolutionary Algorithms on Volunteer Computing Grids. Tenth IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS 2010), Amsterdam, Netherlands. (June 2010).[36]
  30. Nathan Cole, Travis Desell, Daniel Lombranaa Gonzalez, Francisco Fernandez de Vega, Malik Magdon-Ismail, Heidi Newberg, Boleslaw Szymanski and Carlos Varela. Evolutionary Algorithms on Volunteer Computing Platforms: The MilkyWay@Home Project. In F. Fernandez de Vega, E. Cantu-Paz (Eds.): Parallel and Distributed Computational Intelligence, SCI 269, pp 63-90. Springer-Verlag Berlin Heidelberg. (2010).[37]
  31. Travis Desell. Asynchronous Global Optimization for Massive-Scale Computing. PhD thesis. Rensselaer Polytechnic Institute. (2009).[38]
  32. Travis Desell, Malik Magdon-Ismail, Boleslaw Szymanski, Carlos Varela, Heidi Newberg and Nathan Cole. Robust Asynchronous Optimization for Volunteer Computing Grids. Fifth IEEE International Conference on e-Science, pp. 263-270, (December 2009).[39]
  33. Travis Desell, Anthony Waters, Malik Magdon-Ismail, Boleslaw Szymanski, Carlos Varela, Matthew Newby, Heidi Newberg, Andreas Przystawik and Dave Anderson. Accelerating the MilkyWay@Home volunteer computing project with GPUs. In 8th International Conference on Parallel Processing and Applied Mathematics (PPAM 2009), Wroclaw, Poland. (September 2009).[40]
  34. Travis Desell, Boleslaw Szymanski, and Carlos A. Varela. An Asynchronous Hybrid Genetic-Simplex Search for Modeling the Milky Way Galaxy using Volunteer Computing. In Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, Georgia, pages 921-928 (July 2008).[41]
  35. Nathan Cole, Heidi Jo Newberg, Malik Magdon-Ismail, Travis Desell et al. Maximum Likelihood Fitting of Tidal Streams With Application to the Sagittarius Dwarf Tidal Tails American Astronomical Society vol 683-2 pages 750-766 (Aug 2008).[42]
  36. Travis Desell, Boleslaw Szymanski, and Carlos A. Varela. Asynchronous Genetic Search for Scientific Modeling on Large-Scale Heterogeneous Environments. In Proceedings of the 17th International Heterogeneity in Computing Workshop (HCW/IPDPS'08), Miami, FL, pages 12pp, IEEE. (April 2008).[43]
  37. Boleslaw Szymanski, Travis Desell, and Carlos A. Varela. The Effect of Heterogeneity on Asynchronous Panmictic Genetic Search. In Proc. of the Seventh International Conference on Parallel Processing and Applied Mathematics (PPAM'2007), LNCS, Gdansk, Poland. (September 2007).[44]
  38. Travis Desell, Nathan Cole, Malik Magdon-Ismail, Heidi Newberg, Boleslaw Szymanski, and Carlos A. Varela. Distributed and Generic Maximum Likelihood Evaluation. In 3rd IEEE International Conference on e-Science and Grid Computing (eScience2007), Bangalore, India, pages 337-344, (December 2007).[45]

See also

  • Official website Edit this at Wikidata
  • MilkyWay@home statistics at the BOINC project statics website
  • Source code [1], [2], [3]
  • "MilkyWay@Home". BOINC Radio - Project Brief (Podcast).

References

  1. ^ milkyway released under GPLv3
  2. ^ de Zutter W. "MilkyWay@home: Detailed stats". boincstats.com. Retrieved 2020-05-04.
  3. ^ de Zutter W. "MilkyWay@home: Credit overview". boincstats.com. Retrieved 2017-09-18.
  4. ^ Static 3D rendering of the Sagittarius stream Archived
  5. ^ Videos of the best-discovered computer simulations of this project.
  6. ^ Data retrieved from BOINC project statistics page Archived 2014-02-26 at the Wayback Machine on June 22, 2009, and January 12, 2010, respectively
  7. ^ "Gridcoin's Whitelist". Retrieved November 29, 2015.
  8. ^ Mendelsohn, Eric J.; Newberg, Heidi Jo; Shelton, Siddhartha; Widrow, Lawrence M.; Thompson, Jeffery M.; Grillmair, Carl J. (2022-02-01). "Estimate of the Mass and Radial Profile of the Orphan–Chenab Stream's Dwarf-galaxy Progenitor Using MilkyWay@home". The Astrophysical Journal. 926 (2): 106. arXiv:2201.03637. Bibcode:2022ApJ...926..106M. doi:10.3847/1538-4357/ac498a. ISSN 0004-637X. S2CID 245853837.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ Donlon, T.; Newberg, H.; Weiss, J.; Guffey, A.; Thompson, J. (2021-06-01). "A Trifurcated Sagittarius Stream in the South". Aas/Division of Dynamical Astronomy Meeting. 53 (5): 403.03. Bibcode:2021DDA....5240303D.
  10. ^ Mendelsohn, E. J.; Newberg, H. J.; Shelton, S.; Widrow, L.; Thompson, J.; Grillmair, C. (2021-06-01). "Estimate of the Mass and Radial Profile of the Orphan Stream's Dwarf Galaxy Progenitor Using MilkyWay@home". Aas/Division of Dynamical Astronomy Meeting. 53 (5): 403.01. Bibcode:2021DDA....5240301M.
  11. ^ Mendelsohn, E. J.; Newberg, H. J.; Donlon, T.; Thompson, J. M. (2020-08-01). "N-Body Simulations with MilkyWay@home". Aas/Division of Dynamical Astronomy Meeting. 52 (4): 200.01. Bibcode:2020DDA....5120001M.
  12. ^ Donlon, Thomas; Newberg, Heidi Jo; Sanderson, Robyn; Widrow, Lawrence M. (2020-10-01). "The Milky Way's Shell Structure Reveals the Time of a Radial Collision". The Astrophysical Journal. 902 (2): 119. arXiv:2006.08764. Bibcode:2020ApJ...902..119D. doi:10.3847/1538-4357/abb5f6. ISSN 0004-637X. S2CID 219708644.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  13. ^ Shelton, Siddhartha; Newberg, H.; Weiss, J.; Bauer, Jacob S.; Arsenault, M.; Widrow, L.; Rayment, Clayton; Judd, Roland; Desell, Travis; Magdon-Ismail, M.; Newby, M.; Rice, Colin L.; Szymanski, B.; Thompson, Jeffery M.; Varela, Carlos A. (2019). "An Algorithm for Reconstructing the Orphan Stream Progenitor with MilkyWay@home Volunteer Computing". S2CID 201714955. {{cite journal}}: Cite journal requires |journal= (help)
  14. ^ Newberg, Heidi Jo; Shelton, Siddhartha; Mendelsohn, Eric; Weiss, Jake; Arsenault, Matthew; Bauer, Jacob S.; Desell, Travis; Judd, Roland; Magdon-Ismail, Malik; Newberg, Lee A.; Newby, Matthew; Rayment, Clayton; Rice, Colin; Szymanski, Boleslaw K.; Thompson, Jeffery M. (June 2019). "Streams and the Milky Way dark matter halo". Proceedings of the International Astronomical Union. 14 (S353): 75–82. doi:10.1017/S174392131900855X. ISSN 1743-9213. S2CID 208163330.
  15. ^ Shelton, Siddhartha; Newberg, Heidi Jo; Weiss, Jake; Bauer, Jacob S.; Arsenault, Matthew; Widrow, Larry; Rayment, Clayton; Desell, Travis; Judd, Roland; Magdon-Ismail, Malik; Mendelsohn, Eric; Newby, Matthew; Rice, Colin; Szymanski, Boleslaw K.; Thompson, Jeffery M. (2021-02-14). "An Algorithm for Reconstructing the Orphan Stream Progenitor with MilkyWay@home Volunteer Computing". arXiv:2102.07257. {{cite journal}}: Cite journal requires |journal= (help)
  16. ^ Weiss, Jake; Newberg, Heidi Jo; Desell, Travis (2018-10-22). "A Tangle of Stellar Streams in the North Galactic Cap". The Astrophysical Journal. 867 (1): L1. arXiv:1807.03754. Bibcode:2018ApJ...867L...1W. doi:10.3847/2041-8213/aae5fc. ISSN 2041-8213. S2CID 55047680.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  17. ^ Shelton, Siddhartha (2018-01-01). Constraining Dwarf Galaxy Properties Using Tidal Streams (Thesis). Bibcode:2018PhDT.......235S.
  18. ^ "The Stellar Density of the Major Substructure in the Milky Way Halo - ProQuest". www.proquest.com. Retrieved 2022-10-08.
  19. ^ Weiss, Jake; Newberg, Heidi Jo; Newby, Matthew; Desell, Travis (2018-09-27). "Fitting the Density Substructure of the Stellar Halo with MilkyWay@home". The Astrophysical Journal Supplement Series. 238 (2): 17. arXiv:1808.06659. Bibcode:2018ApJS..238...17W. doi:10.3847/1538-4365/aadb92. ISSN 1538-4365. S2CID 119327847.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Newberg, Heidi Jo; Shelton, Siddhartha; Weiss, Jake (2018-01-01). "Characterizing Milky Way Tidal Streams and Dark Matter with MilkyWay@home". American Astronomical Society Meeting Abstracts #231. 231: 212.07. Bibcode:2018AAS...23121207N.
  21. ^ Newberg, Heidi; Shelton, Siddhartha (2018-04-01). "Reconstructing the Dwarf Galaxy Progenitor from Tidal Streams Using MilkyWay@home". Aas/Division of Dynamical Astronomy Meeting. 49: 303.02. Bibcode:2018DDA....4930302N.
  22. ^ Dumas, Julie; Newberg, Heidi J.; Niedzielski, Bethany; Susser, Adam; Thompson, Jeffery M.; Weiss, Jake; Lewis, Kim M. (2015-09-16). "Testing the Dark Matter Caustic Theory Against Observations in the Milky Way". The Astrophysical Journal. 811 (1): 36. arXiv:1508.04494. Bibcode:2015ApJ...811...36D. doi:10.1088/0004-637x/811/1/36. ISSN 1538-4357. S2CID 62792604.
  23. ^ Weiss, Jake; Newberg, Heidi Jo; Arsenault, Matthew; Bechtel, Torrin; Desell, Travis; Newby, Matthew; Thompson, Jeffery M. (2016-01-01). "Using A New Model for Main Sequence Turnoff Absolute Magnitudes to Measure Stellar Streams in the Milky Way Halo". American Astronomical Society Meeting Abstracts #227. 227: 341.19. Bibcode:2016AAS...22734119W.
  24. ^ Shelton, Siddhartha; Newberg, Heidi Jo; Arsenault, Matthew; Bauer, Jacob; Desell, Travis; Judd, Roland; Magdon-Ismail, Malik; Newby, Matthew; Rice, Colin; Thompson, Jeffrey; Ulin, Steve; Weiss, Jake; Widrow, Larry (2016-01-01). "Measuring Dark Matter With MilkyWay@home". American Astronomical Society Meeting Abstracts #227. 227: 139.11. Bibcode:2016AAS...22713911S.
  25. ^ Xu, Yan; Newberg, Heidi Jo; Carlin, Jeffrey L.; Liu, Chao; Deng, Licai; Li, Jing; Schönrich, Ralph; Yanny, Brian (2015-03-11). "Rings and Radial Waves in the Disk of the Milky Way". The Astrophysical Journal. 801 (2): 105. arXiv:1503.00257. Bibcode:2015ApJ...801..105X. doi:10.1088/0004-637x/801/2/105. ISSN 1538-4357. S2CID 119124338.
  26. ^ Scibelli, Samantha; Newberg, Heidi Jo; Carlin, Jeffrey L.; Yanny, Brian (2014-12-02). "Census of Blue Stars in SDSS Dr8". The Astrophysical Journal Supplement Series. 215 (2): 24. arXiv:1411.5744. Bibcode:2014ApJS..215...24S. doi:10.1088/0067-0049/215/2/24. ISSN 1538-4365. S2CID 8621834.
  27. ^ Newberg, Heidi Jo (August 2012). "Determining distances to stars statistically from photometry". Proceedings of the International Astronomical Union. 8 (S289): 74–81. doi:10.1017/S174392131202114X. ISSN 1743-9213. S2CID 119071864.
  28. ^ Xu, Yan; Newberg, Heidi (May 2013). "Exploration of Galactic Structures beyond the Sun toward the anti-center of the Milky Way". Proceedings of the International Astronomical Union. 9 (S298): 450. doi:10.1017/S1743921313007151. ISSN 1743-9213. S2CID 123228241.
  29. ^ Newberg, Heidi Jo; Newby, Matthew; Desell, Travis; Magdon-Ismail, Malik; Szymanski, Boleslaw; Varela, Carlos (May 2013). "MilkyWay@home: Harnessing volunteer computers to constrain dark matter in the Milky Way". Proceedings of the International Astronomical Union. 9 (S298): 98–104. doi:10.1017/S1743921313006273. ISSN 1743-9213. S2CID 8058974.
  30. ^ Newby, Matthew T. (2013-01-01). The sagittarius tidal stream and the shape of the galactic stellar halo (Thesis). Bibcode:2013PhDT........69N.
  31. ^ Newby, Matthew; Cole, Nathan; Newberg, Heidi Jo; Desell, Travis; Magdon-Ismail, Malik; Szymanski, Boleslaw; Varela, Carlos; Willett, Benjamin; Yanny, Brian (2013-05-13). "A Spatial Characterization of the Sagittarius Dwarf Galaxy Tidal Tails". The Astronomical Journal. 145 (6): 163. arXiv:1304.1476. Bibcode:2013AJ....145..163N. doi:10.1088/0004-6256/145/6/163. ISSN 0004-6256.
  32. ^ Guevara S., Gustavo A.; Desell, Travis; LaPorte, Jason; Varela, Carlos A. (April 2011). "Modular Visualization of Distributed Systems". CLEI Electronic Journal. 14 (1): 7. doi:10.19153/cleiej.14.1.7. ISSN 0717-5000.
  33. ^ Desell, Travis; Magdon-Ismail, Malik; Newberg, Heidi; Newberg, Lee A.; Szymanski, Boleslaw K.; Varela, Carlos A. (2016-12-30). "A Robust Asynchronous Newton Method for Massive Scale Computing Systems". arXiv:1702.02204. {{cite journal}}: Cite journal requires |journal= (help)
  34. ^ Desell, Travis; Magdon-Ismail, Malik; Szymanski, Boleslaw; Varela, Carlos A.; Willett, Benjamin A.; Arsenault, Matthew; Newberg, Heidi (May 2011). "Evolving N-Body Simulations to Determine the Origin and Structure of the Milky Way Galaxy's Halo Using Volunteer Computing". 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum: 1888–1895. doi:10.1109/IPDPS.2011.346. ISBN 978-1-61284-425-1. S2CID 10643895.
  35. ^ Desell, Travis; Anderson, David P.; Magdon-Ismail, Malik; Newberg, Heidi; Szymanski, Boleslaw K.; Varela, Carlos A. (July 2010). "An analysis of massively distributed evolutionary algorithms". IEEE Congress on Evolutionary Computation: 1–8. doi:10.1109/CEC.2010.5586073. ISBN 978-1-4244-6909-3. S2CID 581517.
  36. ^ Desell, Travis; Magdon-Ismail, Malik; Szymanski, Boleslaw; Varela, Carlos A.; Newberg, Heidi; Anderson, David P. (2010). Eliassen, Frank; Kapitza, Rüdiger (eds.). "Validating Evolutionary Algorithms on Volunteer Computing Grids". Distributed Applications and Interoperable Systems. Lecture Notes in Computer Science. 6115. Berlin, Heidelberg: Springer: 29–41. doi:10.1007/978-3-642-13645-0_3. ISBN 978-3-642-13645-0. S2CID 29733.
  37. ^ Cole, Nate; Desell, Travis; Lombraña González, Daniel; Fernández de Vega, Francisco; Magdon-Ismail, Malik; Newberg, Heidi; Szymanski, Boleslaw; Varela, Carlos (2010), de Vega, Francisco Fernández; Cantú-Paz, Erick (eds.), "Evolutionary Algorithms on Volunteer Computing Platforms: The MilkyWay@Home Project", Parallel and Distributed Computational Intelligence, Berlin, Heidelberg: Springer, pp. 63–90, doi:10.1007/978-3-642-10675-0_4, ISBN 978-3-642-10675-0, retrieved 2022-10-08
  38. ^ "Asynchronous global optimization for massive-scale computing - ProQuest". www.proquest.com. Retrieved 2022-10-08.
  39. ^ Desell, Travis; Magdon-Ismail, Malik; Szymanski, Boleslaw; Varela, Carlos; Newberg, Heidi; Cole, Nathan (December 2009). "Robust Asynchronous Optimization for Volunteer Computing Grids". 2009 Fifth IEEE International Conference on E-Science: 263–270. doi:10.1109/e-Science.2009.44. ISBN 978-1-4244-5340-5. S2CID 5214001.
  40. ^ Desell, Travis; Waters, Anthony; Magdon-Ismail, Malik; Szymanski, Boleslaw K.; Varela, Carlos A.; Newby, Matthew; Newberg, Heidi; Przystawik, Andreas; Anderson, David (2010). Wyrzykowski, Roman; Dongarra, Jack; Karczewski, Konrad; Wasniewski, Jerzy (eds.). "Accelerating the MilkyWay@Home Volunteer Computing Project with GPUs". Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science. 6067. Berlin, Heidelberg: Springer: 276–288. doi:10.1007/978-3-642-14390-8_29. ISBN 978-3-642-14390-8.
  41. ^ Desell, Travis; Szymanski, Boleslaw; Varela, Carlos (2008-07-12). "An asynchronous hybrid genetic-simplex search for modeling the Milky Way galaxy using volunteer computing". Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. GECCO '08. New York, NY, USA: Association for Computing Machinery: 921–928. doi:10.1145/1389095.1389273. ISBN 978-1-60558-130-9. S2CID 10952453.
  42. ^ Cole, Nathan; Newberg, Heidi Jo; Magdon‐Ismail, Malik; Desell, Travis; Dawsey, Kristopher; Hayashi, Warren; Liu, Xinyang Fred; Purnell, Jonathan; Szymanski, Boleslaw; Varela, Carlos; Willett, Benjamin; Wisniewski, James (2008-08-20). "Maximum Likelihood Fitting of Tidal Streams with Application to the Sagittarius Dwarf Tidal Tails". The Astrophysical Journal. 683 (2): 750–766. arXiv:0805.2121. Bibcode:2008ApJ...683..750C. doi:10.1086/589681. ISSN 0004-637X. S2CID 1660060.
  43. ^ Desell, Travis; Szymanski, Boleslaw; Varela, Carlos (April 2008). "Asynchronous genetic search for scientific modeling on large-scale heterogeneous environments". 2008 IEEE International Symposium on Parallel and Distributed Processing: 1–12. doi:10.1109/IPDPS.2008.4536169. ISBN 978-1-4244-1693-6. S2CID 1107218.
  44. ^ Szymanski, Boleslaw K.; Desell, Travis; Varela, Carlos (2008). Wyrzykowski, Roman; Dongarra, Jack; Karczewski, Konrad; Wasniewski, Jerzy (eds.). "The Effects of Heterogeneity on Asynchronous Panmictic Genetic Search". Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science. 4967. Berlin, Heidelberg: Springer: 457–468. doi:10.1007/978-3-540-68111-3_48. ISBN 978-3-540-68111-3.
  45. ^ Desell, Travis; Cole, Nathan; Magdon-Ismail, Malik; Newberg, Heidi; Szymanski, Boleslaw; Varela, Carlos (December 2007). "Distributed and Generic Maximum Likelihood Evaluation". Third IEEE International Conference on E-Science and Grid Computing (E-Science 2007): 337–344. doi:10.1109/E-SCIENCE.2007.30. ISBN 978-0-7695-3064-2. S2CID 1043475.