Pentamethylcyclopentadiene

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Pentamethylcyclopentadiene
Pentamethylcyclopentadiene
Identifiers
CAS number 4045-44-7 YesY
Jmol-3D images Image 1
Properties
Molecular formula C10H16
Molar mass 136.24 g/mol
Boiling point 55–60 °C (13 mm Hg)
Solubility in water Sparingly soluble
Hazards
Flash point 114 °C (237 °F; 387 K)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY (verify) (what is: YesY/N?)
Infobox references

1,2,3,4,5-Pentamethylcyclopentadiene is a cyclic diolefin with the formula C5Me5H (Me = CH3).[1] 1,2,3,4,5-Pentamethylcyclopentadiene is the precursor to the ligand 1,2,3,4,5-pentamethylcyclopentadienyl, which is often denoted as Cp* (to signify the five methyl groups radiating from the periphery of this ligand as in a five-pointed star). In contrast to less substituted cyclopentadiene derivatives, Cp*H is not prone to dimerization.

Synthesis[edit]

Pentamethylcyclopentadiene is commercially available. It was first prepared from tiglaldehyde via 2,3,4,5-tetramethylcyclopent-2-enone.[2] Alternatively 2-butenyllithium adds to ethylacetate followed by acid-catalyzed dehydrocyclization:[3][4]

2 MeCH=C(Li)Me + MeC(O)OEt → (MeCH=C(Me))2C(OLi)Me + LiOEt
(MeCH=C(Me))2C(OLi)Me + H+ → Cp*H + H2O + Li+

Organometallic derivatives[edit]

Cp*H is a precursor to organometallic compounds containing the C5Me5- (Cp*-) ligand.[5]

Cp*-metal Complexes
Cp*2Fe yellow
Cp*TiCl3 red
[Cp*Fe(CO)2]2 red-violet
[Cp*RhCl2]2 red
[Cp*IrCl2]2 orange
Cp*Re(CO)3 colorless
Cp*Mo(CO)2CH3 orange

Some representative reactions leading to such Cp*-metal complexes follow:[6]

Cp*H + C4H9Li → Cp*Li + C4H10
Cp*Li + TiCl4 → Cp*TiCl3 + LiCl
2 Cp*H + 2 Fe(CO)5 → [Cp*Fe(CO)2]2 + H2 + CO

For the related Cp complex, see cyclopentadienyliron dicarbonyl dimer.

An instructive but obsolete route to Cp* complexes involves the use of hexamethyl Dewar benzene. This method was traditionally used for preparation of the chloro-bridged dimers [Cp*IrCl2]2 and [Cp*RhCl2]2. Such syntheses rely on a hydrohalic acid induced rearrangement of hexamethyl Dewar benzene[7][8] to a substituted pentamethylcyclopentadiene prior to reaction with the hydrate of either iridium(III) chloride[9] or rhodium(III) chloride.[10]

Synthesis of the iridium(III) dimer [Cp*IrCl2]2 using hexamethyl Dewar benzene.

Comparison of Cp* with Cp[edit]

Complexes of pentamethylcyclopentadienyl differ in several ways from the more common cyclopentadienyl (Cp) derivatives. Being more electron-rich, Cp* is a stronger donor and is less easily removed from the metal. Consequently its complexes exhibit increased thermal stability. Its steric bulk allows the isolation of complexes with fragile ligands. Its bulk also attenuates intermolecular interactions, decreasing the tendency to form polymeric structures. Its complexes also tend to be highly soluble in non-polar solvents. The methyl group in Cp* complexes can undergo C-H activation leading to "tuck-in complexes".

References[edit]

  1. ^ Overview of Cp* Compounds: Elschenbroich, C. and Salzer, A. Organometallics: a Concise Introduction (1989) p. 47
  2. ^ L. de Vries (1960). "Preparation of 1,2,3,4,5-Pentamethyl-cyclopentadiene, 1,2,3,4,5,5-Hexamethyl-cyclopentadiene, and 1,2,3,4,5-Pentamethyl-cyclopentadienylcarbinol". J. Org. Chem. 25 (10): 1838. doi:10.1021/jo01080a623. 
  3. ^ S. Threlkel, J. E. Bercaw, P. F. Seidler, J. M. Stryker, R. G. Bergman (1993), 1,2,3,4,5-Pentamethylcyclopentadiene, Org. Synth. ; Coll. Vol. 8: 505 
  4. ^ Fendrick, C. M.; Schertz, L. D.; Mintz, E. A.; Marks, T. J. (1992). "Large-Scale Synthesis of 1,2,3,4,5-Pentamethylcyclopentadiene". Inorganic Syntheses. Inorganic Syntheses 29: 193–198. doi:10.1002/9780470132609.ch47. ISBN 978-0-470-13260-9. 
  5. ^ Yamamoto, A. Organotransition Metal Chemistry: Fundamental Concepts and Applications. (1986) p. 105
  6. ^ R. B. King, M. B. Bisnette (1967). "Organometallic chemistry of the transition metals XXI. Some π-pentamethylcyclopentadienyl derivatives of various transition metals". Journal of Organometallic Chemistry 8 (2): 287–297. doi:10.1016/S0022-328X(00)91042-8. 
  7. ^ Paquette, L. A.; Krow, G. R. (1968). "Electrophilic Additions to Hexamethyldewarbenzene". Tetrahedron Lett. 9 (17): 2139–2142. doi:10.1016/S0040-4039(00)89761-0. 
  8. ^ Criegee, R.; Gruner, H. (1968). "Acid-catalyzed Rearrangements of Hexamethyl-prismane and Hexamethyl-Dewar-benzene". Angew. Chem. Int. Ed. Engl. 7 (6): 467–468. doi:10.1002/anie.196804672. 
  9. ^ Kang, J. W.; Mosley, K.; Maitlis, P. M. (1968). "Mechanisms of Reactions of Dewar Hexamethylbenzene with Rhodium and Iridium Chlorides". Chem. Commun. (21): 1304–1305. doi:10.1039/C19680001304. 
  10. ^ Kang, J. W.; Maitlis, P. M. (1968). "Conversion of Dewar Hexamethylbenzene to Pentamethylcyclopentadienylrhodium(III) Chloride". J. Amer. Chem. Soc. 90 (12): 3259–3261. doi:10.1021/ja01014a063. 

See also[edit]

References[edit]