Schisma

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Not to be confused with Schism (disambiguation).
Schisma as difference between 8 perfect fifths plus 1 just major third and 5 octaves.
Schisma on C About this sound Play . Note that the note depicted lower on the staff (B#++) is higher in pitch (than C).

In music, the schisma (also spelled skhisma) is the interval, a comma, between a Pythagorean comma (531441:524288) and a syntonic comma (81:80) and equals 32805:32768,[1][2] which is 1.9537 cents (About this sound Play ). It may also be defined as:

Schisma is a Greek word meaning a split (see schism) whose musical sense was introduced by Alexander J. Ellis. Earlier theorist Andreas Werckmeister defined the grad as the twelfth root of the Pythagorean comma, or equivalently the difference between the justly tuned fifth and the equally tempered fifth of 700 cents.[3] This value, 1.955 cents, may be approximated by the ratio 886:885.[4] This interval is also sometimes called a schisma.

Curiously, 21/12 51/7 appears very close to 4:3, the just perfect fourth. That's because the difference between a grad and a schisma is so small. So, a rational intonation version of equal temperament may be realized by flattening the fifth by a schisma rather than a grad, a fact first noted by Johann Kirnberger, a pupil of Bach. Twelve of these Kirnberger fifths of 16384:10935 exceed seven octaves, and therefore fail to close, by the tiny interval of 2161 3−84 5−12, the atom of Kirnberger of 0.01536 cents.

Tempering out the schisma leads to schismatic temperament.

As used by Descartes, a schisma added to a perfect fourth = 27:20 (519.55 cents), a schisma subtracted from a perfect fifth = 40:27 (680.45 cents), and a major sixth plus a schisma = 27:16 (= 81:48 = 905.87 cents).[5] By this definition is a "schisma" is what is known as the syntonic comma (81:80).

Sources[edit]

  1. ^ Benson, Dave (2006). Music: A Mathematical Offering, p.171. ISBN 0-521-85387-7.
  2. ^ Apel, Willi (1961). Harvard Dictionary of Music, p.188. ISBN 0-674-37501-7.
  3. ^ "Logarithmic Interval Measures", Huygens-Fokker.org.
  4. ^ "Grad", TonalSoft.com.
  5. ^ Ruth Katz, Carl Dahlhaus (1987). Contemplating Music: Substance, p.523. ISBN 0-918728-60-6.

External links[edit]